Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 4(22): 4871-4879, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36381511

RESUMO

We demonstrate on-surface deprotection of methylenedioxy groups which yielded graphene nanoribbons (GNRs) with edges functionalized by hydroxy groups. While anthracene trimer precursors functionalized with hydroxy groups did not yield GNRs, it was found that hydroxy groups are first protected as methylenedioxy groups and then deprotected during the cyclo-dehydrogenation process to form GNRs with hydroxy groups. The X-ray photoemission spectroscopy and non-contact atomic force microscopy studies revealed that ∼20% of the methylenedioxy turned into hydroxy groups, while the others were hydrogen-terminated. The first-principles density functional theory (DFT) study on the cyclo-dehydrogenation process was performed to investigate the deprotection mechanism, which indicates that hydrogen atoms emerging during the cyclo-dehydrogenation process trigger the deprotection of methylenedioxy groups. The scanning tunneling spectroscopy study and DFT revealed a significant charge transfer from hydroxy to the Au substrate, causing an interface dipole and the HOMO being closer to the Fermi level when compared with hydrogen-terminated GNR/Au(111). This result demonstrates on-surface deprotection and indicates a possible new route to obtain GNRs with desired edge functionalization, which can be a critical component for high-performance devices.

2.
Science ; 377(6603): 264-265, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857600

RESUMO

Basic defects in ice monolayers are seen using a microscope.

3.
Chem Sci ; 12(40): 13301-13306, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34777748

RESUMO

Helicene is a functional material with chirality caused by its characteristic helical geometry. The inversion of its helicity by external stimuli is a challenging task in the advanced control of the molecular chirality. This study fabricated a novel helical molecule, specifically a pentahelicene-analogue twisted aromatic hydrocarbon fused with a graphene nanoribbon, via on-surface synthesis using multiple precursors. Noncontact atomic force microscopy imaging with high spatial resolution confirmed the helicity of the reaction products. The helicity was geometrically converted by pushing a CO-terminated tip into the twisted framework, which is the first demonstration of helicity switching at the single-molecule scale.

4.
Small ; 17(20): e2008010, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33759365

RESUMO

Formic acid (HCOOH) can be catalytically decomposed into H2 and CO2 and is a promising hydrogen storage material. As H2 production catalysts, Cu surfaces allow selective HCOOH decarboxylation; however, the on-surface HCOOH decomposition reaction pathway remains controversial. In this study, the temperature dependence of the HCOOH/Cu(111) adsorption structures is elucidated by scanning tunneling microscopy and non-contact atomic force microscopy, establishing the adsorbate chemical species using density functional theory. 2D HCOOH islands at 80 K, linear chains of HCOOH and monodentate formate at 150 K, chain-like assemblies of monodentate and bidentate formate at 200 K, and bidentate formate clusters at 300 K are observed. At each temperature, the adsorbates experience attractive interactions among themselves. Such aggregation stabilizes them against desorption and decomposition. Thus, accurate evaluation of intermolecular interactions is essential to understand catalytic reactivity.


Assuntos
Formiatos , Hidrogênio , Adsorção , Catálise
5.
Nanotechnology ; 32(3): 035706, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33052141

RESUMO

We have revealed processes of the tip apex distortion in the measurements of non-contact scanning force microscopy. High-spatial-resolution two-dimensional force mapping on KCl(100) surfaces for a large number of tips, seven tips, enabled us to see the complex behavior of the tip apex distortion. The tips are from Si without additional coating, but are altered by the tip-sample interaction and show the behavior of different atomic species. On the KCl(001) surfaces, the tip apex, consisting of K and Cl atoms or of Si, distorted several times while changing the distance even in a weak attractive region. There are variations in rigidity of the tip apex, but all tips distorted in the small attractive region. This complex behavior was categorized in patterns by our analyses. We compare the experimental force-distance data to atomistic simulations using rigid KCl-terminated tips and KCl-terminated tips with an additional KCl-pair designed to perform atomic jumps. We also compare the experimental force-distance data to first principles simulations using Si tips. We mainly find K-terminated tips and Si-terminated tips. We find that Si tips show only one force minimum whereas KCl-terminated tips show two force minima in line with the stronger rigidity of Si compared to KCl. At room temperature, the tip apex atoms can perform atomic jumps that change the atomic configuration of the tip apex.

6.
Nano Lett ; 20(11): 8339-8345, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-33090808

RESUMO

Performing bottom-up synthesis by using molecules adsorbed on a surface is an effective method to yield functional polycyclic aromatic hydrocarbons (PAHs) and nanocarbon materials. The intramolecular cyclodehydrogenation of hydrocarbons is a critical process in this synthesis; however, thus far, its elementary steps have not been elucidated thoroughly. In this study, we utilize the metal tip of a low-temperature noncontact atomic force microscope as a manipulable metal surface to locally activate dehydrogenation for PAH-forming cyclodehydrogenation. This method leads to the dissociation of a H atom of an intermediate to yield the cyclodehydrogenated product in a target-selective and reproducible manner. We demonstrate the metal-tip-catalyzed dehydrogenation for both benzenoid and nonbenzonoid PAHs, suggesting its universal applicability as a catalyst for nanographene synthesis.

7.
Nanoscale ; 12(12): 6651-6657, 2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32175533

RESUMO

On-surface synthesis is a powerful method for fabricating atomically precise graphene nanoribbons (GNRs), but the products always include defective structures. In this study, scanning tunnelling microscopy and atomic force microscopy were used to determine the length distribution of armchair-edge GNRs with a width of seven carbon atoms (7-AGNRs) synthesised on Au(111) and to characterise defective structures. The product quality was improved by increasing the precursor deposition amount because of a preference for intermolecular polymerisation over intramolecular cyclodehydrogenation at a high coverage. However, the annealing rate had a complex effect on the quality, with a low rate elongating 7-AGNRs but degenerating the length uniformity. These insights advance the understanding of the critical parameters for obtaining high-quality products in high yield by on-surface synthesis.

8.
Nano Lett ; 20(3): 2000-2004, 2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32031816

RESUMO

Chemical identification of individual surface atoms has been achieved by measuring the chemical bonds between tip and surface atoms using atomic force microscopy. On the other hand, the discrimination of chemical species at the tip apex is still a challenging task, even though the differences of the species have significant effects on atomic-scale contrast and atom manipulation. Here, we perform the chemical identification of a foremost tip atom using bond energies measured on precharacterized atomic species on a Si surface. We find that chemically different tips show different trends in the chemical bond energy on the sites and that Pauling's equation for polar covalent bonds well describes those trends. On the basis of this knowledge, in situ chemical identification becomes possible. Using the chemically identified (here, Si and Al) tips, we determine the electronegativity of locally formed silicon oxide solely by experiments. Previously such determination was difficult without the help of theoretical calculations. These successful results confirm the validity and versatility of Pauling's equation for application to atomic-scale objects.

9.
Nano Lett ; 20(1): 75-80, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31820649

RESUMO

Localized electronic spin state in molecules has a relatively long spin lifetime and has thus attracted much attention. In this study, we characterize the magnetoresistance of a system comprising Pt and Fe(II)-phthalocyanine (FePc) molecules. The magnetoresistance measurement with the weak antilocalization analysis reveals that a magnetic moment in FePc acts as magnetic impurities for conduction electrons in Pt. Moreover, we find that the magnetoresistance involves a component that possesses the same symmetry as spin-Hall magnetoresistance. These results reveal the spin-angular momentum transfer from metallic Pt to a magnetic moment in FePc molecules, which can be used as a spin torque in a molecular system.

10.
Phys Rev Lett ; 121(11): 116101, 2018 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-30265092

RESUMO

We demonstrated that a nitric oxide (NO) molecule on Cu(110) acts as an "ON-OFF-ON toggle switch" that can be turned on and off by repulsive force and electron injection, respectively. On the surface, NO molecules exist in three configurations: flat along the [001] direction (ON), upright (OFF), and flat along [001[over ¯]] (ON). An NO-functionalized tip, which was characterized by scanning tunneling microscopy and inelastic electron tunneling spectroscopy, can convert an upright NO adsorbate into a flat-lying NO. Atomic force microscopy and a simulation of the interactions between the NO molecules reveal that a repulsive force not aligned with the N-O bond provides the torque that detrudes the NO toggle; i.e., the upright NO adsorbate is tilted away from the tip. Therefore, the NO adsorbate behaves as a nonvolatile sensor for the detection of locally applied repulsive torque.

11.
J Am Chem Soc ; 140(33): 10430-10434, 2018 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-30068084

RESUMO

A core-expanded, pyrrole-fused azacoronene analogue containing two unusual N-doped heptagons was obtained from commercially available octafluoronaphthalene and 3,4-diethylpyrrole in two steps as a heteroatom-doped nonplanar nanographene. Full fusion with the formation of the tetraazadipleiadiene framework and the longitudinally twisted structure was unambiguously confirmed by single-crystal X-ray diffraction analysis. The edge-to-edge dihedral angle along the acene moiety was 63°. This electron-rich π-system showed four reversible oxidation peaks. Despite the nonplanar structure, the Hückel aromaticity owing to a peripheral π-conjugation in the dicationic state was concluded from the bond-length alternation and nucleus-independent chemical shift (NICS) and anisotropy of the induced current density (ACID) calculations.

12.
Nat Commun ; 8: 16089, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28726802

RESUMO

Controlling the structural deformation of organic molecules can drive unique reactions that cannot be induced only by thermal, optical or electrochemical procedures. However, in conventional organic synthesis, including mechanochemical procedures, it is difficult to control skeletal rearrangement in polycyclic aromatic hydrocarbons (PAHs). Here, we demonstrate a reaction scheme for the skeletal rearrangement of PAHs on a metal surface using high-resolution noncontact atomic force microscopy. By a combination of organic synthesis and on-surface cyclodehydrogenation, we produce a well-designed PAH-diazuleno[1,2,3-cd:1',2',3'-fg]pyrene-adsorbed flatly onto Cu(001), in which two azuleno moieties are highly strained by their mutual proximity. This local strain drives the rearrangement of one of the azuleno moieties into a fulvaleno moiety, which has never been reported so far. Our proposed thermally driven, strain-induced synthesis on surfaces will pave the way for the production of a new class of nanocarbon materials that conventional synthetic techniques cannot attain.

13.
Nat Commun ; 8: 15155, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28443645

RESUMO

Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale.

14.
Nanoscale ; 9(18): 5812-5821, 2017 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-28225121

RESUMO

Noble metal nanostructures dispersed on metal oxide surfaces have applications in diverse areas such as catalysis, chemical sensing, and energy harvesting. Their reactivity, chemical selectivity, stability, and light absorption properties are controlled by the interactions at the metal/oxide interface. Single-atom metal adsorbates on the rutile TiO2(110)-(1 × 1) surface have become a paradigmatic model to characterize those interactions and to understand the unique electronic properties of these supported nanostructures. We combine Kelvin probe force microscopy (KPFM) experiments and density functional theory (DFT) calculations to investigate the atomic-scale variations in the contact potential difference of individual Pt atoms adsorbed on a hydroxylated (h) TiO2(110)-(1 × 1) surface. Our experiments show a significant drop in the local contact potential difference (LCPD) over Pt atoms with respect to the TiO2 surface, supporting the presence of an electron transfer from the Pt adsorbates to the substrate. We have identified two characteristic regimes by LCPD spectroscopy. At far tip-sample distances, LCPD values show a weak distance dependence and can be attributed to the intrinsic charge transfer from Pt to the oxide support. Beyond the onset of short-range chemical interactions, LCPD values exhibit a strong distance dependence that we ascribe to the local structural and charge rearrangements induced by the tip-sample interaction. These findings also apply to other electropositive adsorbates such as potassium and the hydrogen atoms forming the OH groups that are present on the h-TiO2(110) surface, promoting KPFM as a suitable tool for the understanding of electron transfer in catalytically active materials.

15.
Nat Commun ; 8: 14313, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-28155856

RESUMO

Local defects in water layers growing on metal surfaces have a key influence on the wetting process at the surfaces; however, such minor structures are undetectable by macroscopic methods. Here, we demonstrate ultrahigh-resolution imaging of single water layers on a copper(110) surface by using non-contact atomic force microscopy (AFM) with molecular functionalized tips at 4.8 K. AFM with a probe tip terminated by carbon monoxide predominantly images oxygen atoms, whereas the contribution of hydrogen atoms is modest. Oxygen skeletons in the AFM images reveal that the water networks containing local defects and edges are composed of pentagonal and hexagonal rings. The results reinforce the applicability of AFM to characterize atomic structures of weakly bonded molecular assemblies.

16.
Small ; 12(29): 3956-66, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27295020

RESUMO

The effects of Pb intercalation on the structural and electronic properties of epitaxial single-layer graphene grown on SiC(0001) substrate are investigated using scanning tunneling microscopy (STM), noncontact atomic force microscopy, Kelvin probe force microscopy (KPFM), X-ray photoelectron spectroscopy, and angle-resolved photoemission spectroscopy (ARPES) methods. The STM results show the formation of an ordered moiré superstructure pattern induced by Pb atom intercalation underneath the graphene layer. ARPES measurements reveal the presence of two additional linearly dispersing π-bands, providing evidence for the decoupling of the buffer layer from the underlying SiC substrate. Upon Pb intercalation, the Si 2p core level spectra show a signature for the existence of PbSi chemical bonds at the interface region, as manifested in a shift of 1.2 eV of the bulk SiC component toward lower binding energies. The Pb intercalation gives rise to hole-doping of graphene and results in a shift of the Dirac point energy by about 0.1 eV above the Fermi level, as revealed by the ARPES measurements. The KPFM experiments have shown that decoupling of the graphene layer by Pb intercalation is accompanied by a work function increase. The observed increase in the work function is attributed to the suppression of the electron transfer from the SiC substrate to the graphene layer. The Pb intercalated structure is found to be stable in ambient conditions and at high temperatures up to 1250 °C. These results demonstrate that the construction of a graphene-capped Pb/SiC system offers a possibility of tuning the graphene electronic properties and exploring intriguing physical properties such as superconductivity and spintronics.

17.
Nat Commun ; 6: 7766, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26178193

RESUMO

Atomic force microscopy is capable of resolving the chemical structure of a single molecule on a surface. In previous research, such high resolution has only been obtained at low temperatures. Here we demonstrate that the chemical structure of a single molecule can be clearly revealed even at room temperature. 3,4,9,10-perylene tetracarboxylic dianhydride, which is strongly adsorbed onto a corner-hole site of a Si(111)-(7 × 7) surface in a bridge-like configuration is used for demonstration. Force spectroscopy combined with first-principle calculations clarifies that chemical structures can be resolved independent of tip reactivity. We show that the submolecular contrast over a central part of the molecule is achieved in the repulsive regime due to differences in the attractive van der Waals interaction and the Pauli repulsive interaction between different sites of the molecule.

18.
Phys Rev Lett ; 114(24): 246102, 2015 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-26196989

RESUMO

The classification of interaction forces between two approaching bodies is important in a wide range of research fields. Here, we propose a method to unambiguously extract the electrostatic force (F(ele)), which is one of the most significant forces. This method is based on the measurement of the energy dissipation under applied voltage pulse between an atomic force microscopy (AFM) tip and sample. It allowed us to obtain F(ele) as a function of the tip-sample distance and voltage including the distance-independent part, to which conventional AFM is insensitive. The obtained F(ele) curves nicely fit the analytical model, enabling estimation of the geometry of the tip. The distance-dependent contact potential difference could also be correctly obtained by the measured F(ele), opening an alternative route to quantitative Kelvin probe force microscopy.

19.
Nano Lett ; 15(7): 4356-63, 2015 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-26027677

RESUMO

We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.

20.
Nat Commun ; 6: 6231, 2015 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-25656414

RESUMO

Single-atom/molecule manipulation for fabricating an atomic-scale switching device is a promising technology for nanoelectronics. So far, scanning probe microscopy studies have demonstrated several atomic-scale switches, mostly in cryogenic environments. Although a high-performance switch at room temperature is essential for practical applications, this remains a challenging obstacle to overcome. Here we report a room-temperature switch composed of a binary atom cluster on the semiconductor surface. Distinctly different types of manipulation techniques enable the construction of an atomically defined binary cluster and the electronic switching of the conformations, either unidirectionally or bidirectionally. The switching process involves a complex rearrangement of multiple atoms in concerted manner. Such a feature is strikingly different from any switches mediated by single-atom/molecule processes that have been previously reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA