Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Med Genet ; 60(10): 1006-1015, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37055166

RESUMO

BACKGROUND: Enoyl-CoA hydratase short-chain 1 (ECHS1) is an enzyme involved in the metabolism of branched chain amino acids and fatty acids. Mutations in the ECHS1 gene lead to mitochondrial short-chain enoyl-CoA hydratase 1 deficiency, resulting in the accumulation of intermediates of valine. This is one of the most common causative genes in mitochondrial diseases. While genetic analysis studies have diagnosed numerous cases with ECHS1 variants, the increasing number of variants of uncertain significance (VUS) in genetic diagnosis is a major problem. METHODS: Here, we constructed an assay system to verify VUS function for ECHS1 gene. A high-throughput assay using ECHS1 knockout cells was performed to index these phenotypes by expressing cDNAs containing VUS. In parallel with the VUS validation system, a genetic analysis of samples from patients with mitochondrial disease was performed. The effect on gene expression in cases was verified by RNA-seq and proteome analysis. RESULTS: The functional validation of VUS identified novel variants causing loss of ECHS1 function. The VUS validation system also revealed the effect of the VUS in the compound heterozygous state and provided a new methodology for variant interpretation. Moreover, we performed multiomics analysis and identified a synonymous substitution p.P163= that results in splicing abnormality. The multiomics analysis complemented the diagnosis of some cases that could not be diagnosed by the VUS validation system. CONCLUSIONS: In summary, this study uncovered new ECHS1 cases based on VUS validation and omics analysis; these analyses are applicable to the functional evaluation of other genes associated with mitochondrial disease.


Assuntos
Doenças Mitocondriais , Humanos , Fenótipo , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Mutação/genética , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Testes Genéticos
2.
J Inherit Metab Dis ; 45(6): 1143-1150, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36053827

RESUMO

Pathogenic mitochondrial DNA heteroplasmy has mainly been assessed with bulk sequencing in individuals with mitochondrial disease. However, the distribution of heteroplasmy at the single-cell level in skin fibroblasts obtained from individuals, together with detailed clinical and biochemical information, remains to be investigated. We used the mitochondrial DNA single-cell assay for the transposase-accessible chromatin sequencing method. Skin fibroblasts were obtained from six individuals with mitochondrial disease and pathogenic m.3243A>G variants of differing severity. Different distributions of heteroplasmy at the single-cell level were identified in skin fibroblasts from all six individuals. Four individuals with different outcomes showed similar averaged heteroplasmy rates with normal mitochondrial respiratory chain enzyme activity, while the distribution of single-cell heteroplasmy patterns differed among the individuals. This study showed different heteroplasmy distribution patterns at the single-cell level in individuals with the m.3243A>G variant, who had a similar averaged heteroplasmy rates with normal mitochondrial respiratory chain enzyme activity. Whether such different heteroplasmy distribution patterns explain the different clinical outcomes should be assessed further in future studies. Measuring heteroplasmy of pathogenic mitochondrial DNA variants at the single-cell level could be important in individuals with mitochondrial disease.


Assuntos
DNA Mitocondrial , Doenças Mitocondriais , Humanos , DNA Mitocondrial/genética , Heteroplasmia , Doenças Mitocondriais/genética , Mitocôndrias/genética
3.
iScience ; 25(7): 104582, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35789860

RESUMO

Abnormal mitochondrial fragmentation by dynamin-related protein1 (Drp1) is associated with the progression of aging-associated heart diseases, including heart failure and myocardial infarction (MI). Here, we report a protective role of outer mitochondrial membrane (OMM)-localized E3 ubiquitin ligase MITOL/MARCH5 against cardiac senescence and MI, partly through Drp1 clearance by OMM-associated degradation (OMMAD). Persistent Drp1 accumulation in cardiomyocyte-specific MITOL conditional-knockout mice induced mitochondrial fragmentation and dysfunction, including reduced ATP production and increased ROS generation, ultimately leading to myocardial senescence and chronic heart failure. Furthermore, ischemic stress-induced acute downregulation of MITOL, which permitted mitochondrial accumulation of Drp1, resulted in mitochondrial fragmentation. Adeno-associated virus-mediated delivery of the MITOL gene to cardiomyocytes ameliorated cardiac dysfunction induced by MI. Our findings suggest that OMMAD activation by MITOL can be a therapeutic target for aging-associated heart diseases, including heart failure and MI.

4.
Int J Cardiol ; 341: 48-55, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34298071

RESUMO

BACKGROUND: Cardiomyopathy is a risk factor for poor prognosis in pediatric patients with mitochondrial disease. However, other risk factors including genetic factors related to poor prognosis in mitochondrial disease has yet to be fully elucidated. METHODS AND RESULTS: Between January 2004 and September 2019, we enrolled 223 consecutive pediatric mitochondrial disease patients aged <18 years with a confirmed genetic diagnosis, including 114 with nuclear gene mutations, 89 patients with mitochondrial DNA (mtDNA) point mutations, 11 with mtDNA single large-scale deletions and 9 with chromosomal aberrations. Cardiomyopathy at baseline was observed in 46 patients (21%). Hazard ratios (HR) and 95% confidence intervals (CI) were calculated for all-cause mortality. Over a median follow-up of 36 months (12-77), there were 85 deaths (38%). The overall survival rate was significantly lower in patients with cardiomyopathy than in those without (p < 0.001, log-rank test). By multivariable analysis, left ventricular (LV) hypertrophy (HR = 4.6; 95% CI: 2.8-7.3), neonatal onset (HR = 2.9; 95% CI: 1.8-4.5) and chromosomal aberrations (HR = 2.9; 95% CI: 1.3-6.5) were independent predictors of all-cause mortality. Patients with LV hypertrophy with neonatal onset and/or chromosomal aberrations had higher mortality (100% in 21 patients) than those with LV hypertrophy alone (71% in 14 patients). CONCLUSION: In pediatric patients with mitochondrial disease, cardiomyopathy was common (21%) and was associated with increased mortality. LV hypertrophy, neonatal onset and chromosomal aberrations were independent predictors of all-cause mortality. Prognosis is particularly unfavorable if LV hypertrophy is combined with neonatal onset and/or chromosomal aberrations.


Assuntos
Cardiomiopatias , Doenças Mitocondriais , Cardiomiopatias/diagnóstico , Cardiomiopatias/genética , Criança , Patrimônio Genético , Humanos , Hipertrofia Ventricular Esquerda , Recém-Nascido , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/epidemiologia , Doenças Mitocondriais/genética , Prognóstico , Fatores de Risco
5.
J Cell Biol ; 219(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32227204

RESUMO

Actomyosin-undercoated adherens junctions are critical for epithelial cell integrity and remodeling. Actomyosin associates with adherens junctions through αE-catenin complexed with ß-catenin and E-cadherin in vivo; however, in vitro biochemical studies in solution showed that αE-catenin complexed with ß-catenin binds to F-actin less efficiently than αE-catenin that is not complexed with ß-catenin. Although a "catch-bond model" partly explains this inconsistency, the mechanism for this inconsistency between the in vivo and in vitro results remains elusive. We herein demonstrate that afadin binds to αE-catenin complexed with ß-catenin and enhances its F-actin-binding activity in a novel mechanism, eventually inducing the proper actomyosin organization through αE-catenin complexed with ß-catenin and E-cadherin at adherens junctions.


Assuntos
Junções Aderentes/genética , Caderinas/genética , Proteínas dos Microfilamentos/genética , beta Catenina/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/ultraestrutura , Actinas/genética , Actomiosina/genética , Actomiosina/ultraestrutura , Junções Aderentes/ultraestrutura , Animais , Humanos , Camundongos , Camundongos Knockout , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Ligação Proteica/genética , Vinculina/genética , alfa Catenina/genética , alfa Catenina/ultraestrutura
6.
Sci Rep ; 10(1): 3528, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32103132

RESUMO

MitoBlue is a fluorescent bisamidine that can be used to easily monitor the changes in mitochondrial degradation processes in different cells and cellular conditions. MitoBlue staining pattern is exceptional among mitochondrial dyes and recombinant fluorescent probes, allowing the dynamic study of mitochondrial recycling in a variety of situations in living cells. MitoBlue is a unique tool for the study of these processes that will allow the detailed characterization of communication between mitochondria and lysosomes.


Assuntos
2-Naftilamina/análogos & derivados , Amidinas/farmacologia , Fibroblastos/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo , 2-Naftilamina/farmacologia , Animais , Embrião de Galinha , Fibroblastos/citologia , Microscopia de Fluorescência
7.
Cell Rep ; 30(4): 1129-1140.e5, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31995754

RESUMO

Plasma membrane damage and cell death during processes such as necroptosis and apoptosis result from cues originating intracellularly. However, death caused by pore-forming agents, like bacterial toxins or complement, is due to direct external injury to the plasma membrane. To prevent death, the plasma membrane has an intrinsic repair ability. Here, we found that repair triggered by pore-forming agents involved TMEM16F, a calcium-activated lipid scramblase also mutated in Scott's syndrome. Upon pore formation and the subsequent influx of intracellular calcium, TMEM16F induced rapid "lipid scrambling" in the plasma membrane. This response was accompanied by membrane blebbing, extracellular vesicle release, preserved membrane integrity, and increased cell viability. TMEM16F-deficient mice exhibited compromised control of infection by Listeria monocytogenes associated with a greater sensitivity of neutrophils to the pore-forming Listeria toxin listeriolysin O (LLO). Thus, the lipid scramblase TMEM16F is critical for plasma membrane repair after injury by pore-forming agents.


Assuntos
Anoctaminas/metabolismo , Toxinas Bacterianas/toxicidade , Membrana Celular/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas de Choque Térmico/toxicidade , Proteínas Hemolisinas/toxicidade , Fosfatidilserinas/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Timócitos/metabolismo , Animais , Anoctaminas/genética , Cálcio/metabolismo , Morte Celular/efeitos dos fármacos , Morte Celular/genética , Membrana Celular/efeitos dos fármacos , Vesículas Extracelulares/efeitos dos fármacos , Listeria monocytogenes/metabolismo , Listeria monocytogenes/patogenicidade , Fígado/citologia , Fígado/metabolismo , Fígado/microbiologia , Fígado/patologia , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Varredura , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/microbiologia , Neutrófilos/patologia , Proteínas de Transferência de Fosfolipídeos/genética , Baço/citologia , Baço/metabolismo , Baço/microbiologia , Baço/patologia , Timócitos/efeitos dos fármacos , Timócitos/ultraestrutura
8.
Front Aging Neurosci ; 12: 609911, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33776740

RESUMO

The hypothalamus plays a central role in homeostasis and aging. The hypothalamic arcuate nucleus (ARC) controls homeostasis of food intake and energy expenditure and retains adult neural stem cells (NSCs)/progenitor cells. Aging induces the loss of NSCs and the enhancement of inflammation, including the activation of glial cells in the ARC, but aging-associated alterations of the hypothalamic cells remain obscure. Here, we identified Sox2 and NeuN double-positive cells in a subpopulation of cells in the mouse ARC. These cells were reduced in number with aging, although NeuN-positive neuronal cells were unaltered in the total number. Diet-induced obesity mice fed with high-fat diet presented a similar hypothalamic alteration to aged mice. This study provides a new insight into aging-induced changes in the hypothalamus.

9.
Sci Rep ; 9(1): 18997, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831814

RESUMO

Nectin-4 cell adhesion molecule and ErbB2 tyrosine kinase receptor are upregulated in many cancers, including breast cancer, and promote cancer cell proliferation and metastasis. Using human breast cancer cell lines T47D and SUM190-PT, in which both nectin-4 and ErbB2 were upregulated, we showed here that nectin-4 cis-interacted with ErB2 and enhanced its dimerization and activation, followed by the activation of the phosphoinositide 3-kinase-AKT signalling pathway for DNA synthesis. The third immunoglobulin-like domain of nectin-4 cis-interacted with domain IV of ErbB2. This region differs from the trastuzumab-interacting region but is included in the trastuzumab-resistant splice variants of ErbB2, p95-ErbB2 and ErbB2ΔEx16. Nectin-4 also cis-interacted with these trastuzumab-resistant splice variants and enhanced the activation of the phosphoinositide 3-kinase-AKT signalling pathway for DNA synthesis. In addition, nectin-4 enhanced the activation of the p95-ErbB2-induced JAK-STAT3 signalling pathway, but not the ErbB2- or ErbB2ΔEx16-induced JAK-STAT3 signalling pathway. These results indicate that nectin-4 cis-interacts with ErbB2 and its trastuzumab-resistant splice variants and enhances the activation of these receptors and downstream signalling pathways in a novel mechanism.


Assuntos
Processamento Alternativo , Moléculas de Adesão Celular/metabolismo , DNA/biossíntese , Resistencia a Medicamentos Antineoplásicos , Receptor ErbB-2/metabolismo , Trastuzumab/farmacologia , Processamento Alternativo/genética , Moléculas de Adesão Celular/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células HEK293 , Humanos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotirosina/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Life Sci Alliance ; 2(4)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31416892

RESUMO

Mitochondrial abnormalities are associated with developmental disorders, although a causal relationship remains largely unknown. Here, we report that increased oxidative stress in neurons by deletion of mitochondrial ubiquitin ligase MITOL causes a potential neuroinflammation including aberrant astrogliosis and microglial activation, indicating that mitochondrial abnormalities might confer a risk for inflammatory diseases in brain such as psychiatric disorders. A role of MITOL in both mitochondrial dynamics and ER-mitochondria tethering prompted us to characterize three-dimensional structures of mitochondria in vivo. In MITOL-deficient neurons, we observed a significant reduction in the ER-mitochondria contact sites, which might lead to perturbation of phospholipids transfer, consequently reduce cardiolipin biogenesis. We also found that branched large mitochondria disappeared by deletion of MITOL. These morphological abnormalities of mitochondria resulted in enhanced oxidative stress in brain, which led to astrogliosis and microglial activation partly causing abnormal behavior. In conclusion, the reduced ER-mitochondria tethering and excessive mitochondrial fission may trigger neuroinflammation through oxidative stress.


Assuntos
Retículo Endoplasmático/metabolismo , Gliose/genética , Mitocôndrias/patologia , Proteínas Mitocondriais/genética , Ubiquitina-Proteína Ligases/genética , Animais , Cardiolipinas/metabolismo , Técnicas de Inativação de Genes , Gliose/metabolismo , Camundongos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Estresse Oxidativo , Fosfolipídeos/metabolismo
11.
BMC Biol ; 15(1): 102, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29089042

RESUMO

Discoveries spanning several decades have pointed to vital membrane lipid trafficking pathways involving both vesicular and non-vesicular carriers. But the relative contributions for distinct membrane delivery pathways in cell growth and organelle biogenesis continue to be a puzzle. This is because lipids flow from many sources and across many paths via transport vesicles, non-vesicular transfer proteins, and dynamic interactions between organelles at membrane contact sites. This forum presents our latest understanding, appreciation, and queries regarding the lipid transport mechanisms necessary to drive membrane expansion during organelle biogenesis and cell growth.


Assuntos
Ciclo Celular , Metabolismo dos Lipídeos , Biogênese de Organelas , Transporte Biológico , Membrana Celular/metabolismo
12.
Nature ; 542(7640): 251-254, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28146471

RESUMO

Peroxisomes function together with mitochondria in a number of essential biochemical pathways, from bile acid synthesis to fatty acid oxidation. Peroxisomes grow and divide from pre-existing organelles, but can also emerge de novo in the cell. The physiological regulation of de novo peroxisome biogenesis remains unclear, and it is thought that peroxisomes emerge from the endoplasmic reticulum in both mammalian and yeast cells. However, in contrast to the yeast system, a number of integral peroxisomal membrane proteins are imported into mitochondria in mammalian cells in the absence of peroxisomes, including Pex3, Pex12, Pex13, Pex14, Pex26, PMP34 and ALDP. Overall, the mitochondrial localization of peroxisomal membrane proteins in mammalian cells has largely been considered a mis-targeting artefact in which de novo biogenesis occurs exclusively from endoplasmic reticulum-targeted peroxins. Here, in following the generation of new peroxisomes within human patient fibroblasts lacking peroxisomes, we show that the essential import receptors Pex3 and Pex14 target mitochondria, where they are selectively released into vesicular pre-peroxisomal structures. Maturation of pre-peroxisomes containing Pex3 and Pex14 requires fusion with endoplasmic reticulum-derived vesicles carrying Pex16, thereby providing full import competence. These findings demonstrate the hybrid nature of newly born peroxisomes, expanding their functional links to mitochondria.


Assuntos
Retículo Endoplasmático/metabolismo , Mitocôndrias/metabolismo , Biogênese de Organelas , Peroxissomos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Fibroblastos/citologia , Humanos , Membranas Intracelulares/metabolismo , Lipoproteínas/deficiência , Lipoproteínas/genética , Lipoproteínas/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Peroxinas , Transporte Proteico , Proteínas Repressoras/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/patologia
13.
J Physiol ; 594(18): 5343-62, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27311616

RESUMO

KEY POINTS: Mitochondrial-derived vesicle (MDV) formation occurs under baseline conditions and is rapidly upregulated in response to stress-inducing conditions in H9c2 cardiac myoblasts. In mice formation of MDVs occurs readily in the heart under normal healthy conditions while mitophagy is comparatively less prevalent. In response to acute stress induced by doxorubicin, mitochondrial dysfunction develops in the heart, triggering MDV formation and mitophagy. MDV formation is thus active in the cardiac system, where it probably constitutes a baseline housekeeping mechanism and a first line of defence against stress. ABSTRACT: The formation of mitochondrial-derived vesicles (MDVs), a process inherited from bacteria, has emerged as a potentially important mitochondrial quality control (QC) mechanism to selectively deliver damaged material to lysosomes for degradation. However, the existence of this mechanism in various cell types, and its physiological relevance, remains unknown. Our aim was to investigate the dynamics of MDV formation in the cardiac system in vitro and in vivo. Immunofluorescence in cell culture, quantitative transmission electron microscopy and electron tomography in vivo were used to study MDV production in the cardiac system. We show that in cardiac cells MDV production occurs at baseline, is commensurate with the dependence of cells on oxidative metabolism, is more frequent than mitophagy and is up-regulated on the time scale of minutes to hours in response to prototypical mitochondrial stressors (antimycin-A, xanthine/xanthine oxidase). We further show that MDV production is up-regulated together with mitophagy in response to doxorubicin-induced mitochondrial and cardiac dysfunction. Here we provide the first quantitative data demonstrating that MDV formation is a mitochondrial QC operating in the heart.


Assuntos
Coração/fisiologia , Mitocôndrias Cardíacas/fisiologia , Animais , Cardiotoxinas/farmacologia , Linhagem Celular , DNA Mitocondrial/genética , Doxorrubicina/farmacologia , Tomografia com Microscopia Eletrônica , Coração/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Doenças Mitocondriais/genética , Músculo Esquelético/diagnóstico por imagem , Miocárdio/ultraestrutura , Ratos
14.
Cell ; 166(2): 314-327, 2016 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-27345367

RESUMO

Antigen presentation is essential for establishing immune tolerance and for immune responses against infectious disease and cancer. Although antigen presentation can be mediated by autophagy, here we demonstrate a pathway for mitochondrial antigen presentation (MitAP) that relies on the generation and trafficking of mitochondrial-derived vesicles (MDVs) rather than on autophagy/mitophagy. We find that PINK1 and Parkin, two mitochondrial proteins linked to Parkinson's disease (PD), actively inhibit MDV formation and MitAP. In absence of PINK1 or Parkin, inflammatory conditions trigger MitAP in immune cells, both in vitro and in vivo. MitAP and the formation of MDVs require Rab9 and Sorting nexin 9, whose recruitment to mitochondria is inhibited by Parkin. The identification of PINK1 and Parkin as suppressors of an immune-response-eliciting pathway provoked by inflammation suggests new insights into PD pathology.


Assuntos
Apresentação de Antígeno , Mitocôndrias/imunologia , Doença de Parkinson/imunologia , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células Dendríticas/patologia , Modelos Animais de Doenças , Inflamação/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Doença de Parkinson/patologia , Proteínas Quinases/genética , Vesículas Transportadoras/metabolismo , Ubiquitina-Proteína Ligases/genética
15.
Mol Cell ; 59(6): 941-55, 2015 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-26384664

RESUMO

There has been evidence that mitochondrial fragmentation is required for apoptosis, but the molecular links between the machinery regulating dynamics and cell death have been controversial. Indeed, activated BAX and BAK can form functional channels in liposomes, bringing into question the contribution of mitochondrial dynamics in apoptosis. We now demonstrate that the activation of apoptosis triggers MAPL/MUL1-dependent SUMOylation of the fission GTPase Drp1, a process requisite for cytochrome c release. SUMOylated Drp1 functionally stabilizes ER/mitochondrial contact sites that act as hotspots for mitochondrial constriction, calcium flux, cristae remodeling, and cytochrome c release. The loss of MAPL does not alter the activation and assembly of BAX/BAK oligomers, indicating that MAPL is activated downstream of BAX/BAK. This work demonstrates how interorganellar contacts are dynamically regulated through active SUMOylation during apoptosis, creating a stabilized platform that signals cytochrome c release.


Assuntos
Apoptose , GTP Fosfo-Hidrolases/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Mitocondriais/metabolismo , Sumoilação , Ubiquitina-Proteína Ligases/metabolismo , Sinalização do Cálcio , Cisteína Endopeptidases/metabolismo , Dinaminas , Retículo Endoplasmático/metabolismo , Células HeLa , Humanos , Mitocôndrias/metabolismo , Peptídeo Hidrolases/metabolismo , Transporte Proteico , Transdução de Sinais , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo
16.
EMBO J ; 33(19): 2142-56, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25107473

RESUMO

The last decade has been marked by tremendous progress in our understanding of the cell biology of mitochondria, with the identification of molecules and mechanisms that regulate their fusion, fission, motility, and the architectural transitions within the inner membrane. More importantly, the manipulation of these machineries in tissues has provided links between mitochondrial dynamics and physiology. Indeed, just as the proteins required for fusion and fission were identified, they were quickly linked to both rare and common human diseases. This highlighted the critical importance of this emerging field to medicine, with new hopes of finding drugable targets for numerous pathologies, from neurodegenerative diseases to inflammation and cancer. In the midst of these exciting new discoveries, an unexpected new aspect of mitochondrial cell biology has been uncovered; the generation of small vesicular carriers that transport mitochondrial proteins and lipids to other intracellular organelles. These mitochondrial-derived vesicles (MDVs) were first found to transport a mitochondrial outer membrane protein MAPL to a subpopulation of peroxisomes. However, other MDVs did not target peroxisomes and instead fused with the late endosome, or multivesicular body. The Parkinson's disease-associated proteins Vps35, Parkin, and PINK1 are involved in the biogenesis of a subset of these MDVs, linking this novel trafficking pathway to human disease. In this review, we outline what has been learned about the mechanisms and functional importance of MDV transport and speculate on the greater impact of these pathways in cellular physiology.


Assuntos
Mitocôndrias/fisiologia , Proteínas Mitocondriais/metabolismo , Organelas/fisiologia , Vesículas Transportadoras/metabolismo , Animais , Humanos
17.
Mol Cell ; 51(1): 20-34, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23727017

RESUMO

The mitochondrial ubiquitin ligase MITOL regulates mitochondrial dynamics. We report here that MITOL regulates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) domain formation through mitofusin2 (Mfn2). MITOL interacts with and ubiquitinates mitochondrial Mfn2, but not ER-associated Mfn2. Mutation analysis identified a specific interaction between MITOL C-terminal domain and Mfn2 HR1 domain. MITOL mediated lysine-63-linked polyubiquitin chain addition to Mfn2, but not its proteasomal degradation. MITOL knockdown inhibited Mfn2 complex formation and caused Mfn2 mislocalization and MAM dysfunction. Sucrose-density gradient centrifugation and blue native PAGE retardation assay demonstrated that MITOL is required for GTP-dependent Mfn2 oligomerization. MITOL knockdown reduced Mfn2 GTP binding, resulting in reduced GTP hydrolysis. We identified K192 in the GTPase domain of Mfn2 as a major ubiquitination site for MITOL. A K192R mutation blocked oligomerization even in the presence of GTP. Taken together, these results suggested that MITOL regulates ER tethering to mitochondria by activating Mfn2 via K192 ubiquitination.


Assuntos
Retículo Endoplasmático/metabolismo , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Animais , GTP Fosfo-Hidrolases/análise , Células HeLa , Humanos , Proteínas de Membrana , Camundongos , Proteínas Mitocondriais/análise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
18.
J Biol Chem ; 286(39): 33879-89, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-21832068

RESUMO

We previously demonstrated that CRAM (CRMP5)-associated GTPase (CRAG), a short splicing variant of centaurin-γ3/AGAP3, facilitated degradation of expanded polyglutamine protein (polyQ) via the nuclear ubiquitin-proteasome pathway. Taking advantage of this feature, we also showed that lentivirus-mediated CRAG expression in the Purkinje cells of mice expressing polyQ resulted in clearance of the polyQ aggregates and rescue from ataxia. However, the molecular basis of the function of CRAG in cell survival against polyQ remains unclear. Here we report that CRAG, but not centaurin-γ3, induces transcriptional activation of c-Fos-dependent activator protein-1 (AP-1) via serum response factor (SRF). Mutation analysis indicated that the nuclear localization signal and both the N- and C-terminal regions of CRAG are critical for SRF-dependent c-Fos activation. CRAG knockdown by siRNA or expression of a dominant negative mutant of CRAG significantly attenuated the c-Fos activation triggered by either polyQ or the proteasome inhibitor MG132. Importantly, c-Fos expression partially rescued the enhanced cytotoxicity of CRAG knockdown in polyQ-expressing or MG132-treated cells. Finally, we suggest the possible involvement of CRAG in the sulfiredoxin-mediated antioxidant pathway via AP-1. Taken together, these results demonstrated that CRAG enhances the cell survival signal against the accumulation of unfolded proteins, including polyQ, through not only proteasome activation, but also the activation of c-Fos-dependent AP-1.


Assuntos
Ataxia/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Peptídeos/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Células de Purkinje/metabolismo , Fator de Transcrição AP-1/metabolismo , Animais , Ataxia/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Ativação Enzimática/genética , GTP Fosfo-Hidrolases/genética , Regulação da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Camundongos , Mutação , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Peptídeos/genética , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-fos/genética , Células de Purkinje/patologia , Fator de Resposta Sérica/genética , Fator de Resposta Sérica/metabolismo , Transdução de Sinais/genética , Fator de Transcrição AP-1/genética
19.
Mitochondrion ; 11(1): 139-46, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20851218

RESUMO

Expansion of a polyglutamine tract in ataxin-3 (polyQ) causes Machado-Joseph disease, a late-onset neurodegenerative disorder characterized by ubiquitin-positive aggregate formation. Several lines of evidence demonstrate that polyQ also accumulates in mitochondria and causes mitochondrial dysfunction. To uncover the mechanism of mitochondrial quality-control via the ubiquitin-proteasome pathway, we investigated whether MITOL, a novel mitochondrial ubiquitin ligase localized in the mitochondrial outer membrane, is involved in the degradation of pathogenic ataxin-3 in mitochondria. In this study, we used N-terminal-truncated pathogenic ataxin-3 with a 71-glutamine repeat (ΔNAT-3Q71) and found that MITOL promoted ΔNAT-3Q71 degradation via the ubiquitin-proteasome pathway and attenuated mitochondrial accumulation of ΔNAT-3Q71. Conversely, MITOL knockdown induced an accumulation of detergent-insoluble ΔNAT-3Q71 with large aggregate formation, resulting in cytochrome c release and subsequent cell death. Thus, MITOL plays a protective role against polyQ toxicity, and thereby may be a potential target for therapy in polyQ diseases. Our findings indicate a protein quality-control mechanism at the mitochondrial outer membrane via a MITOL-mediated ubiquitin-proteasome pathway.


Assuntos
Doença de Machado-Joseph/patologia , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/toxicidade , Peptídeos/química , Peptídeos/toxicidade , Ubiquitina-Proteína Ligases/metabolismo , Animais , Células COS/efeitos dos fármacos , Linhagem Celular , Chlorocebus aethiops , Regulação da Expressão Gênica , Humanos , Membranas Intracelulares/metabolismo , Doença de Machado-Joseph/metabolismo , Proteínas de Membrana , Proteínas Mitocondriais/genética , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo
20.
Genes Cells ; 16(2): 190-202, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21143562

RESUMO

Seven human Sir2 homologues (sirtuin) have been identified to date. In this study, we clarified the mechanism of subcellular localization of two SIRT5 isoforms (i.e., SIRT5(iso1) and SIRT5(iso2) ) encoded by the human SIRT5 gene and whose C-termini slightly differ from each other. Although both isoforms contain cleavable mitochondrial targeting signals at their N-termini, we found that the cleaved SIRT5(iso2) was localized mainly in mitochondria, whereas the cleaved SIRT5(iso1) was localized in both mitochondria and cytoplasm. SIRT5ΔC, which is composed of only the common domain, showed the same mitochondrial localization as that of SIRT5(iso2) . These results suggest that the cytoplasmic localization of cleaved SIRT5(iso1) is dependent on the SIRT5(iso1) -specific C-terminus. Further analysis showed that the C-terminus of SIRT5(iso2) , which is rich in hydrophobic amino acid residues, functions as a mitochondrial membrane insertion signal. In addition, a de novo protein synthesis inhibition experiment using cycloheximide showed that the SIRT5(iso1) -specific C-terminus is necessary for maintaining the stability of SIRT5(iso1) . Moreover, genome sequence analysis from each organism examined indicated that SIRT5(iso2) is a primate-specific isoform. Taken together, these results indicate that human SIRT5 potentially controls various primate-specific functions via two isoforms with different intracellular localizations or stabilities.


Assuntos
Mitocôndrias/enzimologia , Sirtuínas/metabolismo , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sequência Conservada , Estabilidade Enzimática , Células HEK293 , Células HeLa , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/genética , Primatas/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sirtuínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA