Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
bioRxiv ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39091832

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the anterior limb of the internal capsule (ALIC) is an emerging treatment for severe, refractory obsessive-compulsive disorder (OCD). The therapeutic effects of DBS are hypothesized to be mediated by direct modulation of a distributed cortico-striato-thalmo-cortical network underlying OCD symptoms. However, the exact underlying mechanism by which DBS exerts its therapeutic effects still remains unclear. METHOD: In five participants receiving DBS for severe, refractory OCD (3 responders, 2 non-responders), we conducted a DBS On/Off cycling paradigm during the acquisition of functional MRI to determine the network effects of stimulation across a variety of bipolar configurations. We also performed tractography using diffusion-weighted imaging (DWI) to relate the functional impact of DBS to the underlying structural connectivity between active stimulation contacts and functional brain networks. RESULTS: We found that therapeutic DBS had a distributed effect, suppressing BOLD activity within regions such as the orbitofrontal cortex, dorsomedial prefrontal cortex, and subthalamic nuclei compared to non-therapeutic configurations. Many of the regions suppressed by therapeutic DBS were components of the default mode network (DMN). Moreover, the estimated stimulation field from the therapeutic configurations exhibited significant structural connectivity to core nodes of the DMN. CONCLUSIONS: Therapeutic DBS for OCD suppresses BOLD activity within a distributed set of regions within the DMN relative to non-therapeutic configurations. We propose that these effects may be mediated by interruption of communication through structural white matter connections surrounding the DBS active contacts.

2.
JAMA Neurol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037789

RESUMO

This case report describes use of high-intensity focused ultrasound as a method to create spatially precise thermal lesions in the brain without a craniotomy.

5.
Dev Cogn Neurosci ; 67: 101386, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38676989

RESUMO

Coarse measures of socioeconomic status, such as parental income or parental education, have been linked to differences in white matter development. However, these measures do not provide insight into specific aspects of an individual's environment and how they relate to brain development. On the other hand, educational intervention studies have shown that changes in an individual's educational context can drive measurable changes in their white matter. These studies, however, rarely consider socioeconomic factors in their results. In the present study, we examined the unique relationship between educational opportunity and white matter development, when controlling other known socioeconomic factors. To explore this question, we leveraged the rich demographic and neuroimaging data available in the ABCD study, as well the unique data-crosswalk between ABCD and the Stanford Education Data Archive (SEDA). We find that educational opportunity is related to accelerated white matter development, even when accounting for other socioeconomic factors, and that this relationship is most pronounced in white matter tracts associated with academic skills. These results suggest that the school a child attends has a measurable relationship with brain development for years to come.


Assuntos
Escolaridade , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/crescimento & desenvolvimento , Masculino , Feminino , Criança , Fatores Socioeconômicos , Encéfalo/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Pré-Escolar , Imagem de Tensor de Difusão
7.
Dev Cogn Neurosci ; 65: 101341, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219709

RESUMO

Cross-sectional studies have linked differences in white matter tissue properties to reading skills. However, past studies have reported a range of, sometimes conflicting, results. Some studies suggest that white matter properties act as individual-level traits predictive of reading skill, whereas others suggest that reading skill and white matter develop as a function of an individual's educational experience. In the present study, we tested two hypotheses: a) that diffusion properties of the white matter reflect stable brain characteristics that relate to stable individual differences in reading ability or b) that white matter is a dynamic system, linked with learning over time. To answer these questions, we examined the relationship between white matter and reading in a five-year longitudinal dataset and a series of large-scale, single-observation, cross-sectional datasets (N = 14,249 total participants). We find that gains in reading skill correspond to longitudinal changes in the white matter. However, in the cross-sectional datasets, we find no evidence for the hypothesis that individual differences in white matter predict reading skill. These findings highlight the link between dynamic processes in the white matter and learning.


Assuntos
Substância Branca , Humanos , Alfabetização , Estudos Transversais , Encéfalo , Cognição , Leitura
8.
Front Neurosci ; 17: 1188336, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37965219

RESUMO

Background and purpose: Deep learning algorithms for segmentation of multiple sclerosis (MS) plaques generally require training on large datasets. This manuscript evaluates the effect of transfer learning from segmentation of another pathology to facilitate use of smaller MS-specific training datasets. That is, a model trained for detection of one type of pathology was re-trained to identify MS lesions and active demyelination. Materials and methods: In this retrospective study using MRI exams from 149 patients spanning 4/18/2014 to 7/8/2021, 3D convolutional neural networks were trained with a variable number of manually-segmented MS studies. Models were trained for FLAIR lesion segmentation at a single timepoint, new FLAIR lesion segmentation comparing two timepoints, and enhancing (actively demyelinating) lesion segmentation on T1 post-contrast imaging. Models were trained either de-novo or fine-tuned with transfer learning applied to a pre-existing model initially trained on non-MS data. Performance was evaluated with lesionwise sensitivity and positive predictive value (PPV). Results: For single timepoint FLAIR lesion segmentation with 10 training studies, a fine-tuned model demonstrated improved performance [lesionwise sensitivity 0.55 ± 0.02 (mean ± standard error), PPV 0.66 ± 0.02] compared to a de-novo model (sensitivity 0.49 ± 0.02, p = 0.001; PPV 0.32 ± 0.02, p < 0.001). For new lesion segmentation with 30 training studies and their prior comparisons, a fine-tuned model demonstrated similar sensitivity (0.49 ± 0.05) and significantly improved PPV (0.60 ± 0.05) compared to a de-novo model (sensitivity 0.51 ± 0.04, p = 0.437; PPV 0.43 ± 0.04, p = 0.002). For enhancement segmentation with 20 training studies, a fine-tuned model demonstrated significantly improved overall performance (sensitivity 0.74 ± 0.06, PPV 0.69 ± 0.05) compared to a de-novo model (sensitivity 0.44 ± 0.09, p = 0.001; PPV 0.37 ± 0.05, p = 0.001). Conclusion: By fine-tuning models trained for other disease pathologies with MS-specific data, competitive models identifying existing MS plaques, new MS plaques, and active demyelination can be built with substantially smaller datasets than would otherwise be required to train new models.

9.
Brain Stimul ; 16(4): 1072-1082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37385540

RESUMO

BACKGROUND: Humans routinely shift their sleepiness and wakefulness levels in response to emotional factors. The diversity of emotional factors that modulates sleep-wake levels suggests that the ascending arousal network may be intimately linked with networks that mediate mood. Indeed, while animal studies have identified select limbic structures that play a role in sleep-wake regulation, the breadth of corticolimbic structures that directly modulates arousal in humans remains unknown. OBJECTIVE: We investigated whether select regional activation of the corticolimbic network through direct electrical stimulation can modulate sleep-wake levels in humans, as measured by subjective experience and behavior. METHODS: We performed intensive inpatient stimulation mapping in two human participants with treatment resistant depression, who underwent intracranial implantation with multi-site, bilateral depth electrodes. Stimulation responses of sleep-wake levels were measured by subjective surveys (i.e. Stanford Sleepiness Scale and visual-analog scale of energy) and a behavioral arousal score. Biomarker analyses of sleep-wake levels were performed by assessing spectral power features of resting-state electrophysiology. RESULTS: Our findings demonstrated three regions whereby direct stimulation modulated arousal, including the orbitofrontal cortex (OFC), subgenual cingulate (SGC), and, most robustly, ventral capsule (VC). Modulation of sleep-wake levels was frequency-specific: 100Hz OFC, SGC, and VC stimulation promoted wakefulness, whereas 1Hz OFC stimulation increased sleepiness. Sleep-wake levels were correlated with gamma activity across broad brain regions. CONCLUSIONS: Our findings provide evidence for the overlapping circuitry between arousal and mood regulation in humans. Furthermore, our findings open the door to new treatment targets and the consideration of therapeutic neurostimulation for sleep-wake disorders.


Assuntos
Nível de Alerta , Sonolência , Animais , Humanos , Nível de Alerta/fisiologia , Sono/fisiologia , Vigília/fisiologia , Estimulação Elétrica
10.
Ann Clin Transl Neurol ; 10(4): 536-552, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36744645

RESUMO

OBJECTIVE: We explored the relationship between regional PRNP expression from healthy brain tissue and patterns of increased and decreased diffusion and regional brain atrophy in patients with sporadic Creutzfeldt-Jakob disease (sCJD). METHODS: We used PRNP microarray data from 6 healthy adult brains from Allen Brain Institute and T1-weighted and diffusion-weighted MRIs from 34 patients diagnosed with sCJD and 30 age- and sex-matched healthy controls to construct partial correlation matrices across brain regions for specific measures of interest: PRNP expression, mean diffusivity, volume, cortical thickness, and local gyrification index, a measure of cortical folding. RESULTS: Regional patterns of PRNP expression in the healthy brain correlated with regional patterns of diffusion signal abnormalities and atrophy in sCJD. Among different measures of cortical morphology, regional patterns of local gyrification index in sCJD most strongly correlated with regional patterns of PRNP expression. At the vertex-wise level, different molecular subtypes of sCJD showed distinct regional correlations in local gyrification index across the cortex. Local gyrification index correlation patterns most closely matched patterns of PRNP expression in sCJD subtypes known to have greatest pathologic involvement of the cerebral cortex. INTERPRETATION: These results suggest that the specific genetic and molecular environment in which the prion protein is expressed confer variable vulnerability to misfolding across different brain regions that is reflected in patterns of imaging findings in sCJD. Further work in larger samples will be needed to determine whether these regional imaging patterns can serve as reliable markers of distinct disease subtypes to improve diagnosis and treatment targeting.


Assuntos
Síndrome de Creutzfeldt-Jakob , Príons , Adulto , Humanos , Síndrome de Creutzfeldt-Jakob/diagnóstico por imagem , Síndrome de Creutzfeldt-Jakob/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Proteínas Priônicas/genética
12.
Acad Radiol ; 30(3): 492-498, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35654657

RESUMO

RATIONALE AND OBJECTIVES: Recent decades have seen a steady increase in noncontrast head CT utilization in the emergency department with a concurrent rise in the practice of physician assistants (PAs) and nurse practitioners (NPs). The goal of this study was to identify ordering and patient characteristics predictive of positive noncontrast head CTs in the ED. We hypothesized NP/PAs would have lower positivity rates compared to physicians, suggestive of relative overutilization. MATERIALS AND METHODS: We retrospectively identified ED patients who underwent noncontrast head CTs at a single institution: a nonlevel 1 trauma center, during a 7-year period, recording examination positivity, ordering provider training/experience, and multiple additional ordering/patient attributes. Exam positivity was defined as any intracranial abnormality necessitating a change in acute management, such as acute hemorrhage, hydrocephalus, herniation, or worsening prior findings. RESULTS: 6624 patients met inclusion criteria. 4.6% (280/6107) of physician exams were positive while 3.7% (19/517) of NP/PA exams were positive; however, differences were not significant. Increasing provider experience was not associated with positivity. Attributes with increased positivity were patient age (p < 0.001), daytime exam (p < 0.05), and indications regarding malignancy (p < 0.001) or focal neurologic deficit (p = 0.001). Attributes with decreased positivity were indications of trauma (p < 0.001) or vertigo/dizziness (p < 0.05). CONCLUSION: We found no significant difference in rates of exam positivity between physicians and NP/PAs, even accounting for years of experience. This suggests increasing utilization of head CTs in the ED is not due to the increasing presence of NP/PAs, and may be reflective of general practice trends and clear diagnostic algorithms leading to head CT.


Assuntos
Cabeça , Médicos , Humanos , Estudos Retrospectivos , Cabeça/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Serviço Hospitalar de Emergência
13.
Front Hum Neurosci ; 17: 1339340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38384668

RESUMO

Deep brain stimulation (DBS) of the anterior limb of the internal capsule (ALIC) has been used to treat refractory obsessive-compulsive disorder (OCD) and depression, but outcomes are variable, with some patients not responding to this form of invasive neuromodulation. A lack of benefit in some patients may be due to suboptimal positioning of DBS leads. Recently, studies have suggested that specific white matter tracts within the ALIC are associated with improved outcomes. Here, we present the case of a patient who initially had a modest improvement in OCD and depressive symptoms after receiving DBS within the ALIC. Subsequently, he underwent unilateral DBS lead repositioning informed by tractography targeting the ventrolateral and medial prefrontal cortex's connection with the mediodorsal thalamus. In this patient, we also conducted post-implant and post-repositioning diffusion imaging and found that we could successfully perform tractography even with DBS leads in place. Following lead repositioning into tracts predictive of benefit, the patient reached responder criteria for his OCD, and his depression was remitted. This case illustrates that tractography can potentially be used in the evaluation and planning of lead repositioning to achieve therapeutic outcomes.

14.
Radiol Artif Intell ; 4(5): e210243, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36204543

RESUMO

Neural networks were trained for segmentation and longitudinal assessment of posttreatment diffuse glioma. A retrospective cohort (from January 2018 to December 2019) of 298 patients with diffuse glioma (mean age, 52 years ± 14 [SD]; 177 men; 152 patients with glioblastoma, 72 patients with astrocytoma, and 74 patients with oligodendroglioma) who underwent two consecutive multimodal MRI examinations were randomly selected into training (n = 198) and testing (n = 100) samples. A posttreatment tumor segmentation three-dimensional nnU-Net convolutional neural network with multichannel inputs (T1, T2, and T1 postcontrast and fluid-attenuated inversion recovery [FLAIR]) was trained to segment three multiclass tissue types (peritumoral edematous, infiltrated, or treatment-changed tissue [ED]; active tumor or enhancing tissue [AT]; and necrotic core). Separate longitudinal change nnU-Nets were trained on registered and subtracted FLAIR and T1 postlongitudinal images to localize and better quantify and classify changes in ED and AT. Segmentation Dice scores, volume similarities, and 95th percentile Hausdorff distances ranged from 0.72 to 0.89, 0.90 to 0.96, and 2.5 to 3.6 mm, respectively. Accuracy rates of the posttreatment tumor segmentation and longitudinal change networks being able to classify longitudinal changes in ED and AT as increased, decreased, or unchanged were 76%-79% and 90%-91%, respectively. The accuracy levels of the longitudinal change networks were not significantly different from those of three neuroradiologists (accuracy, 90%-92%; κ, 0.58-0.63; P > .05). The results of this study support the potential clinical value of artificial intelligence-based automated longitudinal assessment of posttreatment diffuse glioma. Keywords: MR Imaging, Neuro-Oncology, Neural Networks, CNS, Brain/Brain Stem, Segmentation, Quantification, Convolutional Neural Network (CNN) Supplemental material is available for this article. © RSNA, 2022.

16.
Radiology ; 305(3): 678-687, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35852429

RESUMO

Background Assessment of appropriate brain myelination on T1- and T2-weighted MRI scans is based on gestationally corrected age (GCA) and requires subjective visual inspection of the brain with knowledge of normal myelination milestones. Purpose To develop a convolutional neural network (CNN) capable of estimating neonatal and infant GCA based on brain myelination on MRI scans. Materials and methods In this retrospective study from one academic medical center, brain MRI scans of patients aged 0-25 months with reported normal myelination were consecutively collected between January 1995 and June 2019. The GCA at MRI was manually calculated. After exclusion criteria were applied, T1- and T2-weighted MRI scans were preprocessed with skull stripping, linear registration, z scoring for normalization, and downsampling. A three-dimensional regression CNN was trained to predict GCA using mean absolute error (MAE) as its loss function. Attention maps were calculated using layer-wise relevance propagation. Models were validated on an external test set from the National Institutes of Health (NIH). Model MAEs were compared using Kruskal-Wallis and Mann-Whitney tests. Results A total of 518 neonates and infants (mean GCA, 67 weeks ± 33 [SD], 56% male) was included, comprising 469 T1-, 438 T2-, and 389 T1- and T2-weighted studies. Across 10 runs, MAEs of T1-, T2-, and T1- and T2-weighted networks were 9.8 ± 2.3, 9.1 ± 1.9, and 7.7 ± 1.7 weeks, respectively. Attention map analysis demonstrated increased network attention to the cerebellum, posterior white matter, and basal ganglia signal in neonates with GCA of less than 40 weeks and the anterior white matter signal in infants with GCA of more than 120 weeks, corresponding to the known progression of myelination. The T1- and T2-weighted network tested on the external NIH test set had an MAE of 9.1 weeks, which was reduced to 5.9 weeks with further training using half the external test set (P < .001). Conclusion A three-dimensional convolutional neural network can predict the gestationally corrected age of neonates and infants aged 0-25 months based on brain myelination patterns on T1- and T2-weighted MRI scans. © RSNA, 2022 Online supplemental material is available for this article.


Assuntos
Aprendizado Profundo , Lactente , Recém-Nascido , Humanos , Masculino , Feminino , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Neuroimagem
17.
Radiol Artif Intell ; 4(1): e200152, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35146430

RESUMO

PURPOSE: To assess how well a brain MRI lesion segmentation algorithm trained at one institution performed at another institution, and to assess the effect of multi-institutional training datasets for mitigating performance loss. MATERIALS AND METHODS: In this retrospective study, a three-dimensional U-Net for brain MRI abnormality segmentation was trained on data from 293 patients from one institution (IN1) (median age, 54 years; 165 women; patients treated between 2008 and 2018) and tested on data from 51 patients from a second institution (IN2) (median age, 46 years; 27 women; patients treated between 2003 and 2019). The model was then trained on additional data from various sources: (a) 285 multi-institution brain tumor segmentations, (b) 198 IN2 brain tumor segmentations, and (c) 34 IN2 lesion segmentations from various brain pathologic conditions. All trained models were tested on IN1 and external IN2 test datasets, assessing segmentation performance using Dice coefficients. RESULTS: The U-Net accurately segmented brain MRI lesions across various pathologic conditions. Performance was lower when tested at an external institution (median Dice score, 0.70 [IN2] vs 0.76 [IN1]). Addition of 483 training cases of a single pathologic condition, including from IN2, did not raise performance (median Dice score, 0.72; P = .10). Addition of IN2 training data with heterogeneous pathologic features, representing only 10% (34 of 329) of total training data, increased performance to baseline (Dice score, 0.77; P < .001). This final model produced total lesion volumes with a high correlation to the reference standard (Spearman r = 0.98). CONCLUSION: For brain MRI lesion segmentation, adding a modest amount of relevant training data from an external institution to a previously trained model supported successful application of the model to this external institution.Keywords: Neural Networks, Brain/Brain Stem, Segmentation Supplemental material is available for this article. © RSNA, 2021.

18.
BMC Neurol ; 21(1): 412, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34706674

RESUMO

BACKGROUND: Anti-NMDA receptor encephalitis is an immune-mediated disorder characterized by antibodies against the GluN1 subunit of the NMDA receptor that is increasingly recognized as a treatable cause of childhood epileptic encephalopathy. In adults, the disorder has been associated with reversible changes in brain volume over the course of treatment and recovery, but in children, little is known about its time course and associated imaging manifestations. CASE PRESENTATION: A previously healthy 20-month-old boy presented with first-time unprovoked seizures, dysautonomia, and dyskinesia. Paraneoplastic workup was negative, but CSF was positive for anti-NMDAR antibodies. The patient's clinical condition waxed and waned over a 14-month course of treatment with first- and second-line immunotherapies (including steroids, IVIG, rituximab, and cyclophosphamide). Serial brain MRIs scans obtained at 5 time points spanning this same period showed no abnormal signal or enhancement but were remarkable for cycles of reversible regional cortical volume loss. All scans included identical 1-mm resolution 3D T1-weighted sequences obtained on the same 3 T scanner. Using a novel longitudinal processing stream in FreeSurfer6 (Reuter M, et. al, Neuroimage 61:1402-18, 2012) we quantified the rate of change in cortical volume at each vertex (% volume change per month) between consecutive scans and correlated these changes with the time course of the patient's treatment and clinical response. We found regionally specific changes in cortical volume (up to 7% per month) that preferentially affected the frontal and occipital lobes and paralleled the patient's clinical course, with clinical decline associated with volume loss and clinical improvement associated with volume gain. CONCLUSIONS: Our results suggest that reversible cortical volume loss in anti-NMDA encephalitis has a regional specificity that mirrors many of the clinical symptoms associated with the disorder and tracks the dynamics of disease severity over time. This case illustrates how quantitative morphometric techniques can be applied to clinical imaging data to reveal patterns of brain change that may provide insight into disease pathophysiology. More widespread application of this approach might reveal regional and temporal patterns specific to different types of autoimmune encephalitis, providing a tool for diagnosis and a surrogate marker for monitoring treatment response.


Assuntos
Encefalite Antirreceptor de N-Metil-D-Aspartato , Encefalite Antirreceptor de N-Metil-D-Aspartato/complicações , Encefalite Antirreceptor de N-Metil-D-Aspartato/diagnóstico por imagem , Encefalite Antirreceptor de N-Metil-D-Aspartato/terapia , Autoanticorpos , Encéfalo/diagnóstico por imagem , Humanos , Lactente , Imageamento por Ressonância Magnética , Masculino , Receptores de N-Metil-D-Aspartato
19.
Nat Med ; 27(10): 1696-1700, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34608328

RESUMO

Deep brain stimulation is a promising treatment for neuropsychiatric conditions such as major depression. It could be optimized by identifying neural biomarkers that trigger therapy selectively when symptom severity is elevated. We developed an approach that first used multi-day intracranial electrophysiology and focal electrical stimulation to identify a personalized symptom-specific biomarker and a treatment location where stimulation improved symptoms. We then implanted a chronic deep brain sensing and stimulation device and implemented a biomarker-driven closed-loop therapy in an individual with depression. Closed-loop therapy resulted in a rapid and sustained improvement in depression. Future work is required to determine if the results and approach of this n-of-1 study generalize to a broader population.


Assuntos
Encéfalo/efeitos da radiação , Estimulação Encefálica Profunda/métodos , Transtorno Depressivo Maior/terapia , Estimulação Elétrica/métodos , Adulto , Biomarcadores/análise , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Feminino , Humanos , Índice de Gravidade de Doença , Resultado do Tratamento
20.
Neuroimage Clin ; 31: 102769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34333270

RESUMO

Delineation and quantification of normal and abnormal brain tissues on Magnetic Resonance Images is fundamental to the diagnosis and longitudinal assessment of neurological diseases. Here we sought to develop a convolutional neural network for automated multiclass tissue segmentation of brain MRIs that was robust at typical clinical resolutions and in the presence of a variety of lesions. We trained a 3D U-Net for full brain multiclass tissue segmentation from a prior atlas-based segmentation method on an internal dataset that consisted of 558 clinical T1-weighted brain MRIs (453/52/53; training/validation/test) of patients with one of 50 different diagnostic entities (n = 362) or with a normal brain MRI (n = 196). We then used transfer learning to refine our model on an external dataset that consisted of 7 patients with hand-labeled tissue types. We evaluated the tissue-wise and intra-lesion performance with different loss functions and spatial prior information in the validation set and applied the best performing model to the internal and external test sets. The network achieved an average overall Dice score of 0.87 and volume similarity of 0.97 in the internal test set. Further, the network achieved a median intra-lesion tissue segmentation accuracy of 0.85 inside lesions within white matter and 0.61 inside lesions within gray matter. After transfer learning, the network achieved an average overall Dice score of 0.77 and volume similarity of 0.96 in the external dataset compared to human raters. The network had equivalent or better performance than the original atlas-based method on which it was trained across all metrics and produced segmentations in a hundredth of the time. We anticipate that this pipeline will be a useful tool for clinical decision support and quantitative analysis of clinical brain MRIs in the presence of lesions.


Assuntos
Imageamento por Ressonância Magnética , Neuroimagem , Encéfalo/diagnóstico por imagem , Substância Cinzenta , Humanos , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA