RESUMO
Duplication of chromosome 15q11-13 has been reported to be one of the most frequent cytogenetic copy number variations in autism spectrum disorder (ASD), and a mouse model of paternal 15q11-13 duplication was generated, termed 15q dup mice. While previous studies have replicated some of the behavioral and brain structural phenotypes of ASD separately, the relationship between brain structure and behavior has rarely been examined. In this study, we performed behavioral experiments related to anxiety and social behaviors and magnetic resonance imaging (MRI) using the same set of 15q dup and wild-type mice. 15q dup mice showed increased anxiety and a tendency toward alterations in social behaviors, as reported previously, as well as variability in terms of sociability. MRI analysis revealed that a lower sociability index was correlated with a smaller gray matter volume in the right medial entorhinal cortex. These results may help to understand how variability in behavioral phenotypes of ASD arises even in individuals with the same genetic background and to determine the individual differences in neurodevelopmental trajectory correlated with specific brain structures that underlie these phenotypes.
RESUMO
Visual object memory is a fundamental element of various cognitive abilities, and the underlying neural mechanisms have been extensively examined especially in the anterior temporal cortex of primates. However, both macroscopic large-scale functional network in which this region is embedded and microscopic neuron-level dynamics of top-down regulation it receives for object memory remains elusive. Here, we identified the orbitofrontal node as a critical partner of the anterior temporal node for object memory by combining whole-brain functional imaging during rest and a short-term object memory task in male macaques. Focal chemogenetic silencing of the identified orbitofrontal node downregulated both the local orbitofrontal and remote anterior temporal nodes during the task, in association with deteriorated mnemonic, but not perceptual, performance. Furthermore, imaging-guided neuronal recordings in the same monkeys during the same task causally revealed that orbitofrontal top-down modulation enhanced stimulus-selective mnemonic signal in individual anterior temporal neurons while leaving bottom-up perceptual signal unchanged. Furthermore, similar activity difference was also observed between correct and mnemonic error trials before silencing, suggesting its behavioral relevance. These multifaceted but convergent results provide a multiscale causal understanding of dynamic top-down regulation of the anterior temporal cortex along the ventral fronto-temporal network underpinning short-term object memory in primates.
Assuntos
Neurônios , Lobo Temporal , Animais , Masculino , Lobo Temporal/fisiologia , Neurônios/fisiologia , Macaca mulatta , Memória/fisiologia , Imageamento por Ressonância Magnética , Lobo Frontal/fisiologia , Memória de Curto Prazo/fisiologia , Mapeamento Encefálico , Córtex Pré-Frontal/fisiologiaRESUMO
Deposition of α-synuclein fibrils is implicated in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), while in vivo detection of α-synuclein pathologies in these illnesses has been challenging. Here, we have developed a small-molecule ligand, C05-05, for visualizing α-synuclein deposits in the brains of living subjects. In vivo optical and positron emission tomography (PET) imaging of mouse and marmoset models demonstrated that C05-05 captured a dynamic propagation of fibrillogenesis along neural pathways, followed by disruptions of these structures. High-affinity binding of 18F-C05-05 to α-synuclein aggregates in human brain tissues was also proven by in vitro assays. Notably, PET-detectable 18F-C05-05 signals were intensified in the midbrains of PD and DLB patients as compared with healthy controls, providing the first demonstration of visualizing α-synuclein pathologies in these illnesses. Collectively, we propose a new imaging technology offering neuropathology-based translational assessments of PD and allied disorders toward diagnostic and therapeutic research and development.
Assuntos
Modelos Animais de Doenças , Doença por Corpos de Lewy , Doença de Parkinson , Tomografia por Emissão de Pósitrons , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/diagnóstico por imagem , Humanos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/diagnóstico por imagem , Callithrix , Masculino , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Idoso , Camundongos Endogâmicos C57BLRESUMO
BACKGROUND: MAPT is a causative gene in frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), a hereditary degenerative disease with various clinical manifestations, including progressive supranuclear palsy, corticobasal syndrome, Parkinson's disease, and frontotemporal dementia. OBJECTIVES: To analyze genetically, biochemically, and pathologically multiple members of two families who exhibited various phenotypes of the disease. METHODS: Genetic analysis included linkage analysis, homozygosity haplotyping, and exome sequencing. We conducted tau protein microtubule polymerization assay, heparin-induced tau aggregation, and western blotting with brain lysate from an autopsy case. We also evaluated abnormal tau aggregation by using anti-tau antibody and PM-PBB3. RESULTS: We identified a variant, c.896_897insACA, p.K298_H299insQ, in the MAPT gene of affected patients. Similar to previous reports, most patients presented with atypical parkinsonism. Biochemical analysis revealed that the mutant tau protein had a reduced ability to polymerize microtubules and formed abnormal fibrous aggregates. Pathological study revealed frontotemporal lobe atrophy, midbrain atrophy, depigmentation of the substantia nigra, and four-repeat tau-positive inclusions in the hippocampus, brainstem, and spinal cord neurons. The inclusion bodies also stained positively with PM-PBB3. CONCLUSIONS: This study confirmed that the insACA mutation caused FTDP-17. The affected patients showed symptoms resembling Parkinson's disease initially and symptoms of progressive supranuclear palsy later. Despite the initial clinical diagnosis of frontotemporal dementia in the autopsy case, the spread of lesions could explain the process of progressive supranuclear palsy. The study of more cases in the future will help clarify the common pathogenesis of MAPT mutations or specific pathogeneses of each mutation.
Assuntos
Demência Frontotemporal , Mutação , Proteínas tau , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Encéfalo/patologia , Encéfalo/metabolismo , Cromossomos Humanos Par 17/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Demência Frontotemporal/metabolismo , Demência Frontotemporal/diagnóstico , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/patologia , Transtornos Parkinsonianos/metabolismo , Linhagem , Paralisia Supranuclear Progressiva/genética , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/genética , Proteínas tau/metabolismoRESUMO
Serotonin (5-HT) deficiency is a core biological pathology underlying depression and other psychiatric disorders whose key symptoms include decreased motivation. However, the exact role of 5-HT in motivation remains controversial and elusive. Here, we pharmacologically manipulated the 5-HT system in macaque monkeys and quantified the effects on motivation for goal-directed actions in terms of incentives and costs. Reversible inhibition of 5-HT synthesis increased errors and reaction times on goal-directed tasks, indicating reduced motivation. Analysis found incentive-dependent and cost-dependent components of this reduction. To identify the receptor subtypes that mediate cost and incentive, we systemically administered antagonists specific to 4 major 5-HT receptor subtypes: 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4. Positron emission tomography (PET) visualized the unique distribution of each subtype in limbic brain regions and determined the systemic dosage for antagonists that would achieve approximately 30% occupancy. Only blockade of 5-HT1A decreased motivation through changes in both expected cost and incentive; sensitivity to future workload and time delay to reward increased (cost) and reward value decreased (incentive). Blocking the 5-HT1B receptor also reduced motivation through decreased incentive, although it did not affect expected cost. These results suggest that 5-HT deficiency disrupts 2 processes, the subjective valuation of costs and rewards, via 5-HT1A and 5-HT1B receptors, thus leading to reduced motivation.
Assuntos
Antagonistas da Serotonina , Serotonina , Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Receptor 5-HT1B de Serotonina , Antagonistas da Serotonina/farmacologia , Macaca , AnimaisRESUMO
Increased excitatory neuronal tones have been implicated in autism, but its mechanism remains elusive. The amplified glutamate signals may arise from enhanced glutamatergic circuits, which can be affected by astrocyte activation and suppressive signaling of dopamine neurotransmission. We tested this hypothesis using magnetic resonance spectroscopy and positron emission tomography scan with 11C-SCH23390 for dopamine D1 receptors in the anterior cingulate cortex (ACC). We enrolled 18 male adults with high-functioning autism and 20 typically developed (TD) male subjects. The autism group showed elevated glutamate, glutamine, and myo-inositol (mI) levels compared with the TD group (p = 0.045, p = 0.044, p = 0.030, respectively) and a positive correlation between glutamine and mI levels in the ACC (r = 0.54, p = 0.020). In autism and TD groups, ACC D1 receptor radioligand binding was negatively correlated with ACC glutamine levels (r = - 0.55, p = 0.022; r = - 0.58, p = 0.008, respectively). The enhanced glutamate-glutamine metabolism might be due to astroglial activation and the consequent reinforcement of glutamine synthesis in autistic brains. Glutamine synthesis could underly the physiological inhibitory control of dopaminergic D1 receptor signals. Our findings suggest a high neuron excitation-inhibition ratio with astrocytic activation in the etiology of autism.
Assuntos
Transtorno Autístico , Glutamina , Masculino , Adulto , Humanos , Glutamina/metabolismo , Ácido Glutâmico/metabolismo , Transtorno Autístico/metabolismo , Astrócitos/metabolismo , Dopamina/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/metabolismoRESUMO
BACKGROUND: Central serotonin (5-hydroxytryptamine [5-HT]) neurotransmission has been implicated in the etiology of depression. Most antidepressants ameliorate depressive symptoms by increasing 5-HT at synaptic clefts, but their effect on 5-HT receptors has yet to be clarified. 11C-WAY-100635 and 18F-MPPF are positron emission tomography (PET) radioligands for 5-HT1A receptors. While binding of both ligands reflects 5-HT1A receptor density, 18F-MPPF biding may also be affected by extracellular 5-HT concentrations. This dual-tracer PET study explored the neurochemical substrates underlying antidepressant effects in patients with depression. METHODS: Eleven patients with depression, including 9 treated with antidepressants, and 16 age- and sex-matched healthy individuals underwent PET scans with 11C-WAY-100635 and 18F-MPPF. Radioligand binding was determined by calculating the nondisplaceable binding potential (BPND). RESULTS: Patients treated with antidepressants showed significantly lower 18F-MPPF BPND in neocortical regions and raphe nuclei, but not in limbic regions, than controls. No significant group differences in 11C-WAY-100635 BPND were found in any of the regions. Significant correlations of BPND between 11C-WAY-100635 and 18F-MPPF were observed in limbic regions and raphe nuclei of healthy controls, but no such associations were found in antidepressant-treated patients. Moreover, 18F-MPPF BPND in limbic regions was significantly correlated with the severity of depressive symptoms. CONCLUSIONS: These results suggest a diversity of antidepressant-induced extracellular 5-HT elevations in the limbic system among depressive patients, which is associated with the individual variability of clinical symptoms following the treatment.
Assuntos
Encéfalo , Serotonina , Humanos , Radioisótopos de Carbono , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Serotonina/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Antidepressivos/uso terapêutico , Antidepressivos/metabolismo , Transmissão Sináptica , Receptor 5-HT1A de Serotonina/metabolismoRESUMO
In Alzheimer's disease (AD), network hyperexcitability is frequently observed and associated with subsequent cognitive impairment. Dysfunction of inhibitory interneurons (INs) is thought to be one of the key biological mechanisms of hyperexcitability. However, it is still unknown how INs are functionally affected in tau pathology, which is a major pathology in AD. To clarify this, we evaluated the neuronal activity of cortical INs in 6-month-old rTg4510 mice, a model of tauopathy. Calcium imaging with mDlx enhancer-driven labeling revealed that neuronal activity in INs was decreased in rTg4510 mice. In the patch clamp recording, the firing properties of fast-spiking INs were altered so as to reduce their activity in rTg4510 mice. In parallel with microglial activation, perineuronal nets around parvalbumin-positive INs were partially disrupted in rTg4510 mice. Taken together, our data indicate that the excitability of cortical fast-spiking INs is decreased, possibly because of the disruption of perineuronal nets.
RESUMO
Epilepsy is a disorder in which abnormal neuronal hyperexcitation causes several types of seizures. Because pharmacological and surgical treatments occasionally interfere with normal brain function, a more focused and on-demand approach is desirable. Here we examined the efficacy of a chemogenetic tool-designer receptors exclusively activated by designer drugs (DREADDs)-for treating focal seizure in a nonhuman primate model. Acute infusion of the GABAA receptor antagonist bicuculline into the forelimb region of unilateral primary motor cortex caused paroxysmal discharges with twitching and stiffening of the contralateral arm, followed by recurrent cortical discharges with hemi- and whole-body clonic seizures in two male macaque monkeys. Expression of an inhibitory DREADD (hM4Di) throughout the seizure focus, and subsequent on-demand administration of a DREADD-selective agonist, rapidly suppressed the wide-spread seizures. These results demonstrate the efficacy of DREADDs for attenuating cortical seizure in a nonhuman primate model.
Assuntos
Líquidos Corporais , Convulsões , Masculino , Animais , Encéfalo , Bicuculina/farmacologia , Antagonistas de Receptores de GABA-A , MacacaRESUMO
Patients with progressive supranuclear palsy (PSP) frequently exhibit apathy but the neuropathological processes leading to this phenotype remain elusive. We aimed to examine the involvement of tau protein depositions, oxidative stress (OS), and neuronal loss in the apathetic manifestation of PSP. Twenty patients with PSP and twenty-three healthy controls were enrolled. Tau depositions and brain volumes were evaluated via positron-emission tomography (PET) using a specific probe, 18F-PM-PBB3, and magnetic resonance imaging, respectively. Glutathione (GSH) levels in the anterior and posterior cingulate cortices were quantified by magnetic resonance spectroscopy. Tau pathologies were observed in the subcortical and cortical structures of the patient brains. The angular gyrus exhibited a positive correlation between tau accumulations and apathy scale (AS). Although PSP cases did not show GSH level alterations compared with healthy controls, GSH levels in posterior cingulate cortex were correlated with AS and tau depositions in the angular gyrus. Marked atrophy was observed in subcortical areas, and gray matter volumes in the inferior frontal gyrus and anterior cingulate cortex were positively correlated with AS but showed no correlation with tau depositions and GSH levels. Path analysis highlighted synergistic contributions of tau pathologies and GSH reductions in the posterior cortex to AS, in parallel with associations of gray matter atrophy in the anterior cortex with AS. Apathetic phenotypes may arise from PET-visible tau aggregation and OS compromising the neural circuit resilience in the posterior cortex, along with neuronal loss, with neither PET-detectable tau pathologies nor OS in the anterior cortex.
Assuntos
Apatia , Paralisia Supranuclear Progressiva , Humanos , Proteínas tau/metabolismo , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Paralisia Supranuclear Progressiva/complicações , Encéfalo/patologia , Tomografia por Emissão de Pósitrons/métodos , Estresse OxidativoRESUMO
Objectives: Positron emission tomography (PET) with [11C]raclopride has been applied to measure changes in the concentration of endogenous dopamine induced by pharmacological challenge or neuropsychological stimulation by evaluating the binding potential (BP) between the baseline and activated state. Recently, to reliably estimate BP in the activated state, a new approach with dual-bolus injections in a single PET scan was developed. In this study, we investigated the feasibility of applying this dual-bolus injection approach to measure changes in endogenous dopamine levels induced by cognitive tasks in humans. Methods: First, the reproducibility of BP estimation using the dual-bolus injection approach was evaluated using PET scans without stimulation in nine healthy volunteers. A 90-min scan was performed with bolus injections of [11C]raclopride administered at the beginning of the scan and 45 min after the first injection. BPs in the striatum for the first injection (BP1) and second injection (BP2) were estimated using an extended simplified reference tissue model, and the mean absolute difference (MAD) between the two BPs was calculated. The MAD was also compared with the conventional bolus-plus-continuous infusion approach. Next, PET studies with a cognitive reinforcement learning task were performed on 10 healthy volunteers using the dual-bolus injection approach. The BP1 at baseline and BP2 at the activated state were estimated, and the reduction in BP was evaluated. Results: In the PET scans without stimulation, the dual-bolus injection approach showed a smaller MAD (<2%) between BP1 and BP2 than the bolus-plus-continuous infusion approach, demonstrating good reproducibility of this approach. In the PET scans with the cognitive task performance, the reduction in BP was not observed in the striatum by either approach, showing that the changes in dopamine level induced by the cognitive tasks performed in this study were not sufficient to be detected by PET. Conclusion: Our results indicate that the cognitive task-induced changes in dopamine-related systems may be complex and difficult to measure accurately using PET scans. However, the proposed dual-bolus injection approach provided reliable BP estimates with high reproducibility, suggesting that it has the potential to improve the accuracy of PET scans for measuring changes in dopamine concentrations.
RESUMO
The orbitofrontal cortex (OFC) and its major downstream target within the basal ganglia-the rostromedial caudate nucleus (rmCD)-are involved in reward-value processing and goal-directed behavior. However, a causal contribution of the pathway linking these two structures to goal-directed behavior has not been established. Using the chemogenetic technology of designer receptors exclusively activated by designer drugs with a crossed inactivation design, we functionally and reversibly disrupted interactions between the OFC and rmCD in two male macaque monkeys. We injected an adeno-associated virus vector expressing an inhibitory designer receptor, hM4Di, into the OFC and contralateral rmCD, the expression of which was visualized in vivo by positron emission tomography and confirmed by postmortem immunohistochemistry. Functional disconnection of the OFC and rmCD resulted in a significant and reproducible loss of sensitivity to the cued reward value for goal-directed action. This decreased sensitivity was most prominent when monkeys had accumulated a certain amount of reward. These results provide causal evidence that the interaction between the OFC and the rmCD is needed for motivational control of action on the basis of the relative reward value and internal drive. This finding extends the current understanding of the physiological basis of psychiatric disorders in which goal-directed behavior is affected, such as obsessive-compulsive disorder.SIGNIFICANCE STATEMENT In daily life, we routinely adjust the speed and accuracy of our actions on the basis of the value of expected reward. Abnormalities in these kinds of motivational adjustments might be related to behaviors seen in psychiatric disorders such as obsessive-compulsive disorder. In the current study, we show that the connection from the orbitofrontal cortex to the rostromedial caudate nucleus is essential for motivational control of action in monkeys. This finding expands our knowledge about how the primate brain controls motivation and behavior and provides a particular insight into disorders like obsessive-compulsive disorder in which altered connectivity between the orbitofrontal cortex and the striatum has been implicated.
Assuntos
Núcleo Caudado , Motivação , Animais , Núcleo Caudado/fisiologia , Objetivos , Humanos , Masculino , Córtex Pré-Frontal/fisiologia , RecompensaRESUMO
Intracellular accumulation of filamentous tau aggregates with progressive neuronal loss is a common characteristic of tauopathies. Although the neurodegenerative mechanism of tau-associated pathology remains unclear, molecular elements capable of degrading and/or sequestering neurotoxic tau species may suppress neurodegenerative progression. Here, we provide evidence that p62/SQSTM1, a ubiquitinated cargo receptor for selective autophagy, acts protectively against neuronal death and neuroinflammation provoked by abnormal tau accumulation. P301S mutant tau transgenic mice (line PS19) exhibited accumulation of neurofibrillary tangles with localization of p62 mostly in the brainstem, but neuronal loss with few neurofibrillary tangles in the hippocampus. In the hippocampus of PS19 mice, the p62 level was lower compared to the brainstem, and punctate accumulation of phosphorylated tau unaccompanied by co-localization of p62 was observed. In PS19 mice deficient in p62 (PS19/p62-KO), increased accumulation of phosphorylated tau, acceleration of neuronal loss, and exacerbation of neuroinflammation were observed in the hippocampus as compared with PS19 mice. In addition, increase of abnormal tau and neuroinflammation were observed in the brainstem of PS19/p62-KO. Immunostaining and dot-blot analysis with an antibody selectively recognizing tau dimers and higher-order oligomers revealed that oligomeric tau species in PS19/p62-KO mice were significantly accumulated as compared to PS19 mice, suggesting the requirement of p62 to eliminate disease-related oligomeric tau species. Our findings indicated that p62 exerts neuroprotection against tau pathologies by eliminating neurotoxic tau species, suggesting that the manipulative p62 and selective autophagy may provide an intrinsic therapy for the treatment of tauopathy.
Assuntos
Proteína Sequestossoma-1 , Tauopatias , Proteínas tau , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares/metabolismo , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/genética , Proteínas tau/metabolismoRESUMO
INTRODUCTION: Corticobasal degeneration (CBD) is the most common neuropathological substrate for clinically diagnosed corticobasal syndrome (CBS), while identifying CBD pathology in living individuals has been challenging. This study aimed to examine the capability of positron emission tomography (PET) to detect CBD-type tau depositions and neuropathological classification of CBS. METHODS: Sixteen CBS cases diagnosed by Cambridge's criteria and 12 cognitively healthy controls (HCs) underwent PET scans with 11C-PiB, 11C-PBB3, and 18F-FDG, along with T1-weighted magnetic resonance imaging. Amyloid positivity was assessed by visual inspection of 11C-PiB retentions. Tau positivity was judged by quantitative comparisons of 11C-PBB3 binding to HCs. RESULTS: Sixteen CBS cases consisted of two cases (13%) with amyloid and tau positivities indicative of Alzheimer's disease (AD) pathologies, 11 cases (69%) with amyloid negativity and tau positivity, and three cases (19%) with amyloid and tau negativities. Amyloid(-), tau(+) CBS cases showed increased retentions of 11C-PBB3 in the frontoparietal areas, basal ganglia, and midbrain, and reduced metabolism in the precentral gyrus and thalamus relative to HCs. The enhanced tau probe retentions in the frontal gray and white matters partially overlapped with metabolic deficits and atrophy and correlated with Clinical Dementia Rating scores. CONCLUSIONS: PET-based classification of CBS was in accordance with previous neuropathological reports on the prevalences of AD, non-AD tauopathies, and others in CBS. The current work suggests that 11C-PBB3-PET may assist the biological classification of CBS and understanding of links between CBD-type tau depositions and neuronal deteriorations leading to cognitive declines.
Assuntos
Doença de Alzheimer , Degeneração Corticobasal , Doença de Alzheimer/metabolismo , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismoRESUMO
Maternal immune activation (MIA) is a risk factor for schizophrenia in the offspring. MIA in pregnant rodents can be induced by injection of synthetic polyriboinosinic-polyribocytidilic acid (Poly I:C), which causes decreased striatal dopamine D2 receptor (D2R) expression and behavioral dysfunction mediated by the dopaminergic system in the offspring. However, previous studies did not determine whether Poly I:C induced cortical dopamine D2R abnormality in an MIA rat model. In this study, we performed micro-positron emission tomography (micro-PET) in vivo imaging and ex vivo neurochemical analyses of cortical D2Rs in MIA. In the micro-PET analyses, the anterior cingulate cortex (ACC) region in the offspring showed significantly reduced binding potential for [11C]FLB457, a high affinity radio-ligand toward D2Rs. Neurochemical analysis showed reduction of D2Rs and augmentation of dopamine turnover in the ACC of the rat offspring. Thus, MIA induces dopaminergic dysfunction in the ACC of offspring, similar to the neuronal pathology reported in patients with schizophrenia.
RESUMO
The tendency to avoid punishment, called behavioral inhibition system, is an essential aspect of motivational behavior. Behavioral inhibition system is related to negative affect, such as anxiety, depression and pain, but its neural basis has not yet been clarified. To clarify the association between individual variations in behavioral inhibition system and brain 5-HT2A receptor availability and specify which brain networks were involved in healthy male subjects, using [18F]altanserin positron emission tomography and resting-state functional magnetic resonance imaging. Behavioral inhibition system score negatively correlated with 5-HT2A receptor availability in anterior cingulate cortex. A statistical model indicated that the behavioral inhibition system score was associated with 5-HT2A receptor availability, which was mediated by the functional connectivity between anterior cingulate cortex and left middle frontal gyrus, both of which involved in the cognitive control of negative information processing. Individuals with high behavioral inhibition system displays low 5-HT2A receptor availability in anterior cingulate cortex and this cognitive control network links with prefrontal-cingulate integrity. These findings have implications for underlying the serotonergic basis of physiologies in aversion.
Assuntos
Imageamento por Ressonância Magnética , Receptor 5-HT2A de Serotonina , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Inibição Psicológica , Imageamento por Ressonância Magnética/métodos , Masculino , Redes Neurais de Computação , Vias NeuraisRESUMO
Individual differences in positive memory recollection are of interest in mental health, as positive memories can help protect people against stress and depression. However, it is unclear how individual differences in positive memory recollection are reflected in brain activity in the resting state. Here, we investigate the resting-state functional connectivity (FC) associated with interindividual variations in positive memory by employing cluster-level inferences based on randomization/permutation region of interest (ROI)-to-ROI analyses. We identified a cluster of FCs that was positively associated with positive memory performance, including the frontal operculum, central operculum, parietal operculum, Heschl's gyrus, and planum temporale. The current results suggest that positive memory is innervated by frontotemporal network connectivity, which may have implications for future investigations of vulnerability to stress and depression.
Assuntos
Afeto/fisiologia , Variação Biológica da População , Córtex Cerebral/fisiologia , Conectoma , Rede Nervosa/fisiologia , Reconhecimento Psicológico/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Reconhecimento Visual de Modelos/fisiologia , Adulto JovemRESUMO
PURPOSE: Histamine H3 receptor antagonists and inverse agonists have been extensively developed to treat sleep-wake, neurocognitive, and allied disorders. However, potential adverse effects, including insomnia, hampered the clinical use of these drugs, possibly due to their persistent interaction with the target molecules. The purpose of the present study was to estimate the pharmacokinetics and pharmacodynamics of enerisant, a novel antagonist and inverse agonist for histamine H3 receptors. METHODS: To measure the histamine H3 receptor occupancy by enerisant, positron emission tomography studies using [11C]TASP457, a specific radioligand for histamine H3 receptors, were performed in 12 healthy men at baseline and at 2 h after oral administration of enerisant hydrochloride. For three of these subjects, two additional scans were performed at 6 and 26 h after the administration. Relationships between the receptor occupancy by enerisant and its dose and plasma concentrations were then analyzed. RESULTS: Administration of enerisant hydrochloride decreased the radioligand binding in a dose-dependent manner. The estimated receptor occupancy values at 2 h varied as a function of its dose or plasma concentration. The time course of the occupancy showed persistently high levels (> 85%) in the two subjects with higher doses (25 and 12.5 mg). The occupancy was also initially high at 2 h and 6 h with the lower dose of 5 mg, but it decreased to 69.7% at 26 h. CONCLUSION: The target engagement of enerisant was demonstrated in the brains of living human subjects. The occupancy of histamine H3 receptors by enerisant at 2 h can be predicted by applying the plasma concentration of enerisant to Hill's plot. The preliminary time-course investigation showed persistently high brain occupancy with high doses of enerisant despite the decreasing plasma concentration of the drug. Five milligrams or less dose would be appropriate for the treatment for narcolepsy with initially high occupancy allowing for effective treatment of narcolepsy, and then the occupancy level would be expected to decrease to a level to avoid this drug's unwanted side effect of insomnia at night, although further research is warranted to confirm the statement since the expected decrease is based on the finding in one subject. TRIAL REGISTRATION: This study was retrospectively registered with ClinicalTrials.gov (NCT04631276) on November 17, 2020.
Assuntos
Narcolepsia , Fármacos Neuroprotetores , Receptores Histamínicos H3 , Distúrbios do Início e da Manutenção do Sono , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Histamina/metabolismo , Humanos , Ligantes , Masculino , Narcolepsia/metabolismo , Niacinamida , Tomografia por Emissão de Pósitrons/métodos , Piridinas , Quinolonas , Receptores Histamínicos H3/metabolismo , Distúrbios do Início e da Manutenção do Sono/metabolismoRESUMO
Arginine vasopressin is a hormone that is synthesized mainly in the hypothalamus and stored in the posterior pituitary. Receptors for vasopressin are categorized into at least 3 subtypes (V1A, V1B, and V2). Among these subtypes, the V1B receptor (V1BR), highly expressed in the pituitary, is a primary regulator of hypothalamic-pituitary-adrenal axis activity and thus a potential target for treatment of neuropsychiatric disorders such as depression and anxiety. N-tert-butyl-2-[2-(6-methoxypyridine-2-yl)-6-[3-(morpholin-4-yl)propoxy]-4-oxopyrido[2,3-d]pyrimidin-3(4H)-yl]acetamide (TASP699) is a novel PET radiotracer with high affinity and selectivity for V1BR. The purpose of this study was to characterize the pharmacokinetic and binding profiles of 11C-TASP699 in humans and determine its utility in an occupancy study of a novel V1BR antagonist, TS-121. Methods: Six healthy subjects were scanned twice with 11C-TASP699 to determine the most appropriate kinetic model for analysis of imaging data and test-retest reproducibility of outcome measures. Nine healthy subjects were scanned before and after administration of TS-121 (active component: THY1773) to assess V1BR occupancy. Metabolite-corrected arterial input functions were obtained. Pituitary time-activity curves were analyzed with 1- and 2-tissue-compartment (1TC and 2TC, respectively) models and multilinear analysis 1 (MA1) to calculate distribution volume (VT). Relative test-retest variability (TRV) and absolute TRV were calculated. Since no brain region could be used as a reference region, percentage change in VT after TS-121 administration was computed to assess its receptor occupancy and correlate with plasma concentrations of the drug. Results:11C-TASP699 showed high uptake in the pituitary and no uptake in any brain region. The 2TC model provided better fits than the 1TC model. Because the MA1 VT estimates were similar to the 2TC VT estimates, MA1 was the model of choice. The TRV of VT was good (TRV, -2% ± 14%; absolute TRV, 11%). THY1773 reduced VT in a dose-dependent fashion, with a half-maximal inhibitory concentration of 177 ± 52 ng/mL in plasma concentration. There were no adverse events resulting in discontinuation from the study. Conclusion:11C-TASP699 was shown to display appropriate kinetics in humans, with substantial specific binding and good reproducibility of VT Therefore, this tracer is suitable for measurement of V1BR in the human pituitary and the V1BR occupancy of TS-121, a novel V1BR antagonist.