Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Lett ; 541: 215752, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35644286

RESUMO

Previous studies have demonstrated that autophagy tightly regulates apoptosis. However, the underlying mechanism whereby autophagy regulates apoptosis remains unclear. Here, we discover a "autophagy inhibition-mitochondrial turnover disruption-ROS elevation-DNA damage-p53 transactivation-apoptosis" axis that explicates the process of autophagy modulating apoptosis. We found that autophagy inhibition induced by TRPML1, a cationic channel localized in the lysosome, results in accumulation of damaged mitochondria via blocking the mitophagic flux to lysosomes in human melanoma and glioblastoma cells. The disrupted mitochondria turnover leads to ROS elevation, which in turn causes severe damage to DNA in these cancer cells. Damage to DNA resulted from TRPML1-mediated autophagy inhibition subsequently activates p53, which ultimately triggers mitochondrial mediated apoptosis by modulating pro- and anti-apoptosis proteins in these cancer cells. As a result, by triggering apoptosis, TRPML1-induced autophagy inhibition greatly suppresses growth of human melanoma and glioma both in vitro and in vivo. In summary, our findings define the mechanism underling the regulation of autophagy inhibition in apoptosis and represent TRPML1 as a novel target for potentially treating melanoma and glioblastoma in the clinical setting.


Assuntos
Glioblastoma , Melanoma , Canais de Potencial de Receptor Transitório/metabolismo , Apoptose , Autofagia , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Lisossomos/metabolismo , Melanoma/metabolismo , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
2.
Autophagy ; 18(12): 3053-3055, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35491864

RESUMO

Accumulating evidence suggests that macroautophagy/autophagy dysfunction plays a critical role in myocardial ischemia-reperfusion (I/R) injury. However, the underlying mechanisms responsible for malfunctional autophagy in cardiomyocytes subjected to I/R are poorly understood. As a result, there are no effective therapeutic options that target autophagy to prevent myocardial I/R injury. We recently revealed that MCOLN1/TRPML1, a lysosomal cationic channel, directly contributes to the inhibition of autophagic flux in cardiomyocytes post I/R. We found that MCOLN1 is activated secondary to reactive oxygen species (ROS) elevation following I/R, which in turn induces the release of lysosomal zinc into the cytosol. This ultimately blocks autophagic flux in cardiomyocytes by disrupting the fusion between autophagosomes containing engulfed mitochondria and lysosomes. Furthermore, we discovered that the MCOLN1-mediated inhibition of autophagy induced by I/R impairs mitochondrial function, which results in further detrimental ROS release that directly contributes to cardiomyocyte death. More importantly, restoration of blocked autophagic flux in cardiomyocytes subjected to I/R achieved by blocking MCOLN1 channels significantly rescues cardiomyocyte death in vitro and greatly improves cardiac function of mice subjected to I/R in vivo. Therefore, targeting MCOLN1 represents a novel therapeutic strategy to protect against myocardial I/R injury.Abbreviations: I/R: ischemia-reperfusion; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCOLN1/TRPML1: mucolipin TRP cation channel 1; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1.


Assuntos
Traumatismo por Reperfusão Miocárdica , Canais de Potencial de Receptor Transitório , Camundongos , Animais , Miócitos Cardíacos/metabolismo , Autofagia , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Autofagossomos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
3.
Basic Res Cardiol ; 117(1): 20, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35389129

RESUMO

Accumulating evidence suggests that autophagy dysfunction plays a critical role in myocardial ischemia/reperfusion (I/R) injury. However, the underling mechanism of malfunctional autophagy in the cardiomyocytes subjected to I/R has not been well defined. As a result, there is no effective therapeutic option by targeting autophagy to prevent myocardial I/R injury. Here, we used both an in vitro and an in vivo I/R model to monitor autophagic flux in the cardiomyocytes, by exposing neonatal rat ventricular myocytes to hypoxia/reoxygenation and by subjecting mice to I/R, respectively. We observed that the autophagic flux in the cardiomyocytes subjected to I/R was blocked in both in vitro and in vivo models. Down-regulating a lysosomal cationic channel, TRPML1, markedly restored the blocked myocardial autophagic flux induced by I/R, demonstrating that TRPML1 directly contributes to the blocked autophagic flux in the cardiomyocytes subjected to I/R. Mechanistically, TRPML1 is activated secondary to ROS elevation following ischemia/reperfusion, which in turn induces the release of lysosomal zinc into the cytosol and ultimately blocks the autophagic flux in cardiomyocytes, presumably by disrupting the fusion between autophagosomes and lysosomes. As a result, the inhibited myocardial autophagic flux induced by TRPML1 disrupted mitochondria turnover and resulted in mass accumulation of damaged mitochondria and further ROS release, which directly led to cardiomyocyte death. More importantly, pharmacological and genetic inhibition of TRPML1 channels greatly reduced infarct size and rescued heart function in mice subjected to I/R in vivo by restoring impaired myocardial autophagy. In summary, our study demonstrates that secondary to ROS elevation, activation of TRPML1 results in autophagy inhibition in the cardiomyocytes subjected to I/R, which directly leads to cardiomyocyte death by disrupting mitochondria turnover. Therefore, targeting TRPML1 represents a novel therapeutic strategy to protect against myocardial I/R injury.


Assuntos
Traumatismo por Reperfusão Miocárdica , Animais , Apoptose , Autofagia , Camundongos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miocárdio , Miócitos Cardíacos , Ratos , Espécies Reativas de Oxigênio
4.
Autophagy ; 18(8): 1932-1954, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34878954

RESUMO

Compelling evidence has demonstrated that macroautophagy/autophagy plays an important role in regulating multiple steps of metastatic cascades; however, the precise role of autophagy in metastasis remains unclear. This study demonstrates that autophagy inhibition induced by MCOLN1/TRPML1 suppresses cancer metastasis by evoking the ROS-mediated TP53/p53 pathway. First, we found that MCOLN1-mediated autophagy inhibition not only profoundly inhibits both migration and invasion in malignant melanoma and glioma cell lines in vitro, but also suppresses melanoma metastasis in vivo. Second, our study reveals that autophagy inhibition induced by MCOLN1 leads to damaged mitochondria accumulation followed by large quantities of ROS release. Third, we demonstrate that the elevated ROS resulting from autophagy inhibition subsequently triggers TP53 activity, which in turn modulates expression of its downstream targets that are involved in a broad spectrum of the metastatic cascade to suppress metastasis including MMP members and TWIST. In summary, our findings have established a mechanism by which autophagy inhibition suppresses metastasis via the ROS-TP53 signaling pathway. More importantly, our study demonstrates that autophagy inhibition through stimulation of MCOLN1 could evidently be one of the therapeutic potentials for combating cancer metastasis.Abbreviations: 3-MA: 3-methyladenine; AA: amino acid; ATG5: autophagy related 5; ATG12: autophagy-related 12; Baf-A1: bafilomycin A1; CCCP: carbonyl cyanide m-chlorophenylhydrazone; CQ: chloroquine; DMEM: Dulbecco's Modified Eagle Medium; EMT: epithelial-mesenchymal transition; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HEK: human embryonic kidney; LAMP1: lysosomal-associated membrane protein 1; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MCOLN1/TRPML1: mucolipin TRP cation channel 1; MMP: matrix metallopeptidase; NC: negative control; NRK: normal rat kidney; PBS: phosphate-buffered saline; shRNA: short hairpin RNA; siRNA: short interfering RNA; SQSTM1/p62: sequestosome 1; ULK1: unc-51 like autophagy-activating kinase 1.


Assuntos
Neoplasias , Canais de Potencial de Receptor Transitório , Autofagia/fisiologia , Humanos , Mitocôndrias/metabolismo , Metástase Neoplásica , Neoplasias/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Proteína Supressora de Tumor p53/metabolismo
5.
Cancer Lett ; 525: 179-197, 2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-34752845

RESUMO

The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitous cation channel possessing kinase activity. TRPM7 mediates a variety of physiological responses by conducting flow of cations such as Ca2+, Mg2+, and Zn2+. Here, we show that the activation of TRPM7 channel stimulated by chemical agonists of TRPM7, Clozapine or Naltriben, inhibited autophagy via mediating Zn2+ release to the cytosol, presumably from the intracellular Zn2+-accumulating vesicles where TRPM7 localizes. Zn2+ release following the activation of TRPM7 disrupted the fusion between autophagosomes and lysosomes by disturbing the interaction between Sxt17 and VAMP8 which determines fusion status of autophagosomes and lysosomes. Ultimately, the disrupted fusion resulting from stimulation of TRPM7 channels arrested autophagy. Functionally, we demonstrate that the autophagy inhibition mediated by TRPM7 triggered cell death and suppressed metastasis of cancer cells in vitro, more importantly, restricted tumor growth and metastasis in vivo, by evoking apoptosis, cell cycle arrest, and reactive oxygen species (ROS) elevation. These findings represent a strategy for stimulating TRPM7 to combat cancer.


Assuntos
Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/genética , Proteínas R-SNARE/genética , Canais de Cátion TRPM/genética , Apoptose/efeitos dos fármacos , Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Clozapina/farmacologia , Humanos , Lisossomos/efeitos dos fármacos , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Metástase Neoplásica , Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPM/agonistas , Zinco/farmacologia
6.
Autophagy ; 17(12): 4401-4422, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33890549

RESUMO

Macroautophagy/autophagy is elevated to ensure the high demand for nutrients for the growth of cancer cells. Here we demonstrated that MCOLN1/TRPML1 is a pharmaceutical target of oncogenic autophagy in cancers such as pancreatic cancer, breast cancer, gastric cancer, malignant melanoma, and glioma. First, we showed that activating MCOLN1, by increasing expression of the channel or using the MCOLN1 agonists, ML-SA5 or MK6-83, arrests autophagic flux by perturbing fusion between autophagosomes and lysosomes. Second, we demonstrated that MCOLN1 regulates autophagy by mediating the release of zinc from the lysosome to the cytosol. Third, we uncovered that zinc influx through MCOLN1 blocks the interaction between STX17 (syntaxin 17) in the autophagosome and VAMP8 in the lysosome and thereby disrupting the fusion process that is determined by the two SNARE proteins. Furthermore, we demonstrated that zinc influx originating from the extracellular fluid arrests autophagy by the same mechanism as lysosomal zinc, confirming the fundamental function of zinc as a participant in membrane trafficking. Last, we revealed that activating MCOLN1 with the agonists, ML-SA5 or MK6-83, triggers cell death of a number of cancer cells by evoking autophagic arrest and subsequent apoptotic response and cell cycle arrest, with little or no effect observed on normal cells. Consistent with the in vitro results, administration of ML-SA5 in Patu 8988 t xenograft mice profoundly suppresses tumor growth and improves survival. These results establish that a lysosomal cation channel, MCOLN1, finely controls oncogenic autophagy in cancer by mediating zinc influx into the cytosol.Abbreviation: Abbreviations: 3-MA: 3-methyladenine; AA: amino acid; ATG12: autophagy related 12; Baf-A1: bafilomycin A1; BAPTA-am: 1,2-bis(2-aminophenoxy)ethane-N, N,N',N'-tetraacetic acid tetrakis-acetoxymethyl ester; co-IP: coimmunoprecipitaion; CQ: chloroquine; DMEM: Dulbecco's Modified Eagle Medium; FBS: fetal bovine serum; GAPDH: glyceraldehyde- 3-phosphate dehydrogenase; HCQ: hydroxychloroquine; HEK: human embryonic kidney; LAMP1: lysosomal associated membrane protein 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MCOLN1/TRPML1: mucolipin TRP cation channel 1; MTORC1: mechanistic target of rapamycin kinase complex 1; NC: negative control; NRK: normal rat kidney epithelial cells; PBS: phosphate-buffered saline; PtdIns3K: phosphatidylinositol 3-kinase; RPS6KB/S6K: ribosomal protein S6 kinase B; shRNA: short hairpin RNA; siRNA: short interfering RNA; SNARE: soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TPEN: N,N,N',N'-tetrakis(2-pyridylmethyl)ethylenediamine; TTM: tetrathiomolybdate; ULK1: unc-51 like autophagy activating kinase 1; VAMP8: vesicle associated membrane protein 8; Zn2+: zinc.


Assuntos
Neoplasias , Canais de Potencial de Receptor Transitório , Animais , Autofagossomos/metabolismo , Autofagia/fisiologia , Humanos , Lisossomos/metabolismo , Camundongos , Neoplasias/metabolismo , Oncogenes , Preparações Farmacêuticas/metabolismo , Ratos , Canais de Potencial de Receptor Transitório/metabolismo , Zinco/metabolismo , Zinco/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA