Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
2.
Artigo em Inglês | MEDLINE | ID: mdl-38723059

RESUMO

AIMS: Standard methods of heart chamber volume estimation in cardiovascular magnetic resonance (CMR) typically utilize simple geometric formulae based on a limited number of slices. We aimed to evaluate whether an automated deep learning neural network prediction of 3D anatomy of all four chambers would show stronger associations with cardiovascular risk factors and disease than standard volume estimation methods in the UK Biobank. METHODS: A deep learning network was adapted to predict 3D segmentations of left and right ventricles (LV, RV) and atria (LA, RA) at ∼1mm isotropic resolution from CMR short and long axis 2D segmentations obtained from a fully automated machine learning pipeline in 4723 individuals with cardiovascular disease (CVD) and 5733 without in the UK Biobank. Relationships between volumes at end-diastole (ED) and end-systole (ES) and risk/disease factors were quantified using univariate, multivariate and logistic regression analyses. Strength of association between deep learning volumes and standard volumes was compared using the area under the receiving operator characteristic curve (AUC). RESULTS: Univariate and multivariate associations between deep learning volumes and most risk and disease factors were stronger than for standard volumes (higher R2 and more significant P values), particularly for sex, age, and body mass index. AUC for all logistic regressions were higher for deep learning volumes than standard volumes (p<0.001 for all four chambers at ED and ES). CONCLUSIONS: Neural network reconstructions of whole heart volumes had significantly stronger associations with cardiovascular disease and risk factors than standard volume estimation methods in an automatic processing pipeline.

3.
J Med Artif Intell ; 7: 3, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38584766

RESUMO

Background: Prediction of clinical outcomes in coronary artery disease (CAD) has been conventionally achieved using clinical risk factors. The relationship between imaging features and outcome is still not well understood. This study aims to use artificial intelligence to link image features with mortality outcome. Methods: A retrospective study was performed on patients who had stress perfusion cardiac magnetic resonance (SP-CMR) between 2011 and 2021. The endpoint was all-cause mortality. Convolutional neural network (CNN) was used to extract features from stress perfusion images, and multilayer perceptron (MLP) to extract features from electronic health records (EHRs), both networks were concatenated in a hybrid neural network (HNN) to predict study endpoint. Image CNN was trained to predict study endpoint directly from images. HNN and image CNN were compared with a linear clinical model using area under the curve (AUC), F1 scores, and McNemar's test. Results: Total of 1,286 cases were identified, with 201 death events (16%). The clinical model had good performance (AUC =80%, F1 score =37%). Best Image CNN model showed AUC =72% and F1 score =38%. HNN outperformed the other two models (AUC =82%, F1 score =43%). McNemar's test showed statistical difference between image CNN and both clinical model (P<0.01) and HNN (P<0.01). There was no significant difference between HNN and clinical model (P=0.15). Conclusions: Death in patients with suspected or known CAD can be predicted directly from stress perfusion images without clinical knowledge. Prediction can be improved by HNN that combines clinical and SP-CMR images.

6.
Radiology ; 306(2): e220122, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36125376

RESUMO

Background Left ventricular (LV) subclinical remodeling is associated with adverse outcomes and indicates mechanisms of disease development. Standard metrics such as LV mass and volumes may not capture the full range of remodeling. Purpose To quantify the relationship between LV three-dimensional shape at MRI and incident cardiovascular events over 10 years. Materials and Methods In this retrospective study, 5098 participants from the Multi-Ethnic Study of Atherosclerosis who were free of clinical cardiovascular disease underwent cardiac MRI from 2000 to 2002. LV shape models were automatically generated using a machine learning workflow. Event-specific remodeling signatures were computed using partial least squares regression, and random survival forests were used to determine which features were most associated with incident heart failure (HF), coronary heart disease (CHD), and cardiovascular disease (CVD) events over a 10-year follow-up period. The discrimination improvement of adding LV shape to traditional cardiovascular risk factors, coronary artery calcium scores, and N-terminal pro-brain natriuretic peptide levels was assessed using the index of prediction accuracy and time-dependent area under the receiver operating characteristic curve (AUC). Kaplan-Meier survival curves were used to illustrate the ability of remodeling signatures to predict the end points. Results Overall, 4618 participants had sufficient three-dimensional MRI information to generate patient-specific LV models (mean age, 60.6 years ± 9.9 [SD]; 2540 women). Among these participants, 147 had HF, 317 had CHD, and 455 had CVD events. The addition of LV remodeling signatures to traditional cardiovascular risk factors improved the mean AUC for 10-year survival prediction and achieved better performance than LV mass and volumes; HF (AUC, 0.83 ± 0.01 and 0.81 ± 0.01, respectively; P < .05), CHD (AUC, 0.77 ± 0.01 and 0.75 ± 0.01, respectively; P < .05), and CVD (AUC, 0.78 ± 0.0 and 0.76 ± 0.0, respectively; P < .05). Kaplan-Meier analysis demonstrated that participants with high-risk HF remodeling signatures had a 10-year survival rate of 56% compared with 95% for those with low-risk scores. Conclusion Left ventricular event-specific remodeling signatures were more predictive of heart failure, coronary heart disease, and cardiovascular disease events over 10 years than standard mass and volume measures and enable an automatic personalized medicine approach to tracking remodeling. © RSNA, 2022 Online supplemental material is available for this article.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Doença das Coronárias , Insuficiência Cardíaca , Humanos , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Estudos Prospectivos , Valor Preditivo dos Testes , Imageamento por Ressonância Magnética/métodos , Fatores de Risco
7.
J Magn Reson Imaging ; 55(4): 1043-1059, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34331487

RESUMO

Cardiovascular disease is the leading cause of death and a significant contributor of health care costs. Noninvasive imaging plays an essential role in the management of patients with cardiovascular disease. Cardiac magnetic resonance (MR) can noninvasively assess heart and vascular abnormalities, including biventricular structure/function, blood hemodynamics, myocardial tissue composition, microstructure, perfusion, metabolism, coronary microvascular function, and aortic distensibility/stiffness. Its ability to characterize myocardial tissue composition is unique among alternative imaging modalities in cardiovascular disease. Significant growth in cardiac MR utilization, particularly in Europe in the last decade, has laid the necessary clinical groundwork to position cardiac MR as an important imaging modality in the workup of patients with cardiovascular disease. Although lack of availability, limited training, physician hesitation, and reimbursement issues have hampered widespread clinical adoption of cardiac MR in the United States, growing clinical evidence will ultimately overcome these challenges. Advances in cardiac MR techniques, particularly faster image acquisition, quantitative myocardial tissue characterization, and image analysis have been critical to its growth. In this review article, we discuss recent advances in established and emerging cardiac MR techniques that are expected to strengthen its capability in managing patients with cardiovascular disease. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 1.


Assuntos
Doenças Cardiovasculares , Doenças Cardiovasculares/diagnóstico por imagem , Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Miocárdio
8.
J Cardiovasc Magn Reson ; 23(1): 105, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34615541

RESUMO

BACKGROUND: Relationships between right ventricular (RV) and left ventricular (LV) shape and function may be useful in determining optimal timing for pulmonary valve replacement in patients with repaired tetralogy of Fallot (rTOF). However, these are multivariate and difficult to quantify. We aimed to quantify variations in biventricular shape associated with pulmonary regurgitant volume (PRV) in rTOF using a biventricular atlas. METHODS: In this cross-sectional retrospective study, a biventricular shape model was customized to cardiovascular magnetic resonance (CMR) images from 88 rTOF patients (median age 16, inter-quartile range 11.8-24.3 years). Morphometric scores quantifying biventricular shape at end-diastole and end-systole were computed using principal component analysis. Multivariate linear regression was used to quantify biventricular shape associations with PRV, corrected for age, sex, height, and weight. Regional associations were confirmed by univariate correlations with distances and angles computed from the models, as well as global systolic strains computed from changes in arc length from end-diastole to end-systole. RESULTS: PRV was significantly associated with 5 biventricular morphometric scores, independent of covariates, and accounted for 12.3% of total shape variation (p < 0.05). Increasing PRV was associated with RV dilation and basal bulging, in conjunction with decreased LV septal-lateral dimension (LV flattening) and systolic septal motion towards the RV (all p < 0.05). Increased global RV radial, longitudinal, circumferential and LV radial systolic strains were significantly associated with increased PRV (all p < 0.05). CONCLUSION: A biventricular atlas of rTOF patients quantified multivariate relationships between left-right ventricular morphometry and wall motion with pulmonary regurgitation. Regional RV dilation, LV reduction, LV septal-lateral flattening and increased RV strain were all associated with increased pulmonary regurgitant volume. Morphometric scores provide simple metrics linking mechanisms for structural and functional alteration with important clinical indices.


Assuntos
Insuficiência da Valva Pulmonar , Tetralogia de Fallot , Adolescente , Adulto , Criança , Estudos Transversais , Humanos , Valor Preditivo dos Testes , Insuficiência da Valva Pulmonar/diagnóstico por imagem , Insuficiência da Valva Pulmonar/etiologia , Estudos Retrospectivos , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/cirurgia , Função Ventricular Direita , Adulto Jovem
9.
Front Cardiovasc Med ; 8: 807728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127868

RESUMO

The Multi-Ethnic Study of Atherosclerosis (MESA), begun in 2000, was the first large cohort study to incorporate cardiovascular magnetic resonance (CMR) to study the mechanisms of cardiovascular disease in over 5,000 initially asymptomatic participants, and there is now a wealth of follow-up data over 20 years. However, the imaging technology used to generate the CMR images is no longer in routine use, and methods trained on modern data fail when applied to such legacy datasets. This study aimed to develop a fully automated CMR analysis pipeline that leverages the ability of machine learning algorithms to enable extraction of additional information from such a large-scale legacy dataset, expanding on the original manual analyses. We combined the original study analyses with new annotations to develop a set of automated methods for customizing 3D left ventricular (LV) shape models to each CMR exam and build a statistical shape atlas. We trained VGGNet convolutional neural networks using a transfer learning sequence between two-chamber, four-chamber, and short-axis MRI views to detect landmarks. A U-Net architecture was used to detect the endocardial and epicardial boundaries in short-axis images. The landmark detection network accurately predicted mitral valve and right ventricular insertion points with average error distance <2.5 mm. The agreement of the network with two observers was excellent (intraclass correlation coefficient >0.9). The segmentation network produced average Dice score of 0.9 for both myocardium and LV cavity. Differences between the manual and automated analyses were small, i.e., <1.0 ± 2.6 mL/m2 for indexed LV volume, 3.0 ± 6.4 g/m2 for indexed LV mass, and 0.6 ± 3.3% for ejection fraction. In an independent atlas validation dataset, the LV atlas built from the fully automated pipeline showed similar statistical relationships to an atlas built from the manual analysis. Hence, the proposed pipeline is not only a promising framework to automatically assess additional measures of ventricular function, but also to study relationships between cardiac morphologies and future cardiac events, in a large-scale population study.

10.
Front Cardiovasc Med ; 7: 102, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32695795

RESUMO

In many cardiovascular pathologies, the shape and motion of the heart provide important clues to understanding the mechanisms of the disease and how it progresses over time. With the advent of large-scale cardiac data, statistical modeling of cardiac anatomy has become a powerful tool to provide automated, precise quantification of the status of patient-specific heart geometry with respect to reference populations. Powered by supervised or unsupervised machine learning algorithms, statistical cardiac shape analysis can be used to automatically identify and quantify the severity of heart diseases, to provide morphometric indices that are optimally associated with clinical factors, and to evaluate the likelihood of adverse outcomes. Recently, statistical cardiac atlases have been integrated with deep neural networks to enable anatomical consistency of cardiac segmentation, registration, and automated quality control. These combinations have already shown significant improvements in performance and avoid gross anatomical errors that could make the results unusable. This current trend is expected to grow in the near future. Here, we aim to provide a mini review highlighting recent advances in statistical atlasing of cardiac function in the context of artificial intelligence in cardiac imaging.

11.
Radiol Cardiothorac Imaging ; 2(1): e190032, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32715298

RESUMO

PURPOSE: To demonstrate the feasibility and performance of a fully automated deep learning framework to estimate myocardial strain from short-axis cardiac MRI-tagged images. MATERIALS AND METHODS: In this retrospective cross-sectional study, 4508 cases from the U.K. Biobank were split randomly into 3244 training cases, 812 validation cases, and 452 test cases. Ground truth myocardial landmarks were defined and tracked by manual initialization and correction of deformable image registration using previously validated software with five readers. The fully automatic framework consisted of (a) a convolutional neural network (CNN) for localization and (b) a combination of a recurrent neural network (RNN) and a CNN to detect and track the myocardial landmarks through the image sequence for each slice. Radial and circumferential strain were then calculated from the motion of the landmarks and averaged on a slice basis. RESULTS: Within the test set, myocardial end-systolic circumferential Green strain errors were -0.001 ± 0.025, -0.001 ± 0.021, and 0.004 ± 0.035 in the basal, mid-, and apical slices, respectively (mean ± standard deviation of differences between predicted and manual strain). The framework reproduced significant reductions in circumferential strain in participants with diabetes, hypertensive participants, and participants with a previous heart attack. Typical processing time was approximately 260 frames (approximately 13 slices) per second on a GPU with 12 GB RAM compared with 6-8 minutes per slice for the manual analysis. CONCLUSION: The fully automated combined RNN and CNN framework for analysis of myocardial strain enabled unbiased strain evaluation in a high-throughput workflow, with similar ability to distinguish impairment due to diabetes, hypertension, and previous heart attack.Published under a CC BY 4.0 license. Supplemental material is available for this article.

12.
J Cardiovasc Magn Reson ; 21(1): 61, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31590664

RESUMO

Machine learning (ML) is making a dramatic impact on cardiovascular magnetic resonance (CMR) in many ways. This review seeks to highlight the major areas in CMR where ML, and deep learning in particular, can assist clinicians and engineers in improving imaging efficiency, quality, image analysis and interpretation, as well as patient evaluation. We discuss recent developments in the field of ML relevant to CMR in the areas of image acquisition & reconstruction, image analysis, diagnostic evaluation and derivation of prognostic information. To date, the main impact of ML in CMR has been to significantly reduce the time required for image segmentation and analysis. Accurate and reproducible fully automated quantification of left and right ventricular mass and volume is now available in commercial products. Active research areas include reduction of image acquisition and reconstruction time, improving spatial and temporal resolution, and analysis of perfusion and myocardial mapping. Although large cohort studies are providing valuable data sets for ML training, care must be taken in extending applications to specific patient groups. Since ML algorithms can fail in unpredictable ways, it is important to mitigate this by open source publication of computational processes and datasets. Furthermore, controlled trials are needed to evaluate methods across multiple centers and patient groups.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Diagnóstico por Computador , Interpretação de Imagem Assistida por Computador , Aprendizado de Máquina , Imagem Cinética por Ressonância Magnética , Imagem de Perfusão do Miocárdio , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Circulação Coronária , Aprendizado Profundo , Humanos , Miocárdio/patologia , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Aprendizado de Máquina Supervisionado , Aprendizado de Máquina não Supervisionado
13.
J Cardiovasc Magn Reson ; 21(1): 41, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31315625

RESUMO

BACKGROUND: The associations between cardiovascular disease (CVD) risk factors and the biventricular geometry of the right ventricle (RV) and left ventricle (LV) have been difficult to assess, due to subtle and complex shape changes. We sought to quantify reference RV morphology as well as biventricular variations associated with common cardiovascular risk factors. METHODS: A biventricular shape atlas was automatically constructed using contours and landmarks from 4329 UK Biobank cardiovascular magnetic resonance (CMR) studies. A subdivision surface geometric mesh was customized to the contours using a diffeomorphic registration algorithm, with automatic correction of slice shifts due to differences in breath-hold position. A reference sub-cohort was identified consisting of 630 participants with no CVD risk factors. Morphometric scores were computed using linear regression to quantify shape variations associated with four risk factors (high cholesterol, high blood pressure, obesity and smoking) and three disease factors (diabetes, previous myocardial infarction and angina). RESULTS: The atlas construction led to an accurate representation of 3D shapes at end-diastole and end-systole, with acceptable fitting errors between surfaces and contours (average error less than 1.5 mm). Atlas shape features had stronger associations than traditional mass and volume measures for all factors (p < 0.005 for each). High blood pressure was associated with outward displacement of the LV free walls, but inward displacement of the RV free wall and thickening of the septum. Smoking was associated with a rounder RV with inward displacement of the RV free wall and increased relative wall thickness. CONCLUSION: Morphometric relationships between biventricular shape and cardiovascular risk factors in a large cohort show complex interactions between RV and LV morphology. These can be quantified by z-scores, which can be used to study the morphological correlates of disease.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética/normas , Função Ventricular Esquerda , Função Ventricular Direita , Remodelação Ventricular , Idoso , Pontos de Referência Anatômicos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/fisiopatologia , Feminino , Ventrículos do Coração/fisiopatologia , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Valores de Referência , Reprodutibilidade dos Testes , Fatores de Risco , Reino Unido/epidemiologia
14.
Sci Rep ; 9(1): 1130, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718635

RESUMO

Left ventricular (LV) mass and volume are important indicators of clinical and pre-clinical disease processes. However, much of the shape information present in modern imaging examinations is currently ignored. Morphometric atlases enable precise quantification of shape and function, but there has been no objective comparison of different atlases in the same cohort. We compared two independent LV atlases using MRI scans of 4547 UK Biobank participants: (i) a volume atlas derived by automatic non-rigid registration of image volumes to a common template, and (ii) a surface atlas derived from manually drawn epicardial and endocardial surface contours. The strength of associations between atlas principal components and cardiovascular risk factors (smoking, diabetes, high blood pressure, high cholesterol and angina) were quantified with logistic regression models and five-fold cross validation, using area under the ROC curve (AUC) and Akaike Information Criterion (AIC) metrics. Both atlases exhibited similar principal components, showed similar relationships with risk factors, and had stronger associations (higher AUC and lower AIC) than a reference model based on LV mass and volume, for all risk factors (DeLong p < 0.05). Morphometric variations associated with each risk factor could be quantified and visualized and were similar between atlases. UK Biobank LV shape atlases are robust to construction method and show stronger relationships with cardiovascular risk factors than mass and volume.


Assuntos
Doenças Cardiovasculares/diagnóstico por imagem , Ventrículos do Coração/anatomia & histologia , Idoso , Anatomia Artística , Atlas como Assunto , Bancos de Espécimes Biológicos , Feminino , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Humanos , Modelos Logísticos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Reino Unido , Função Ventricular Esquerda
15.
J Cardiovasc Transl Res ; 11(2): 123-132, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29294215

RESUMO

Approximately 1% of all babies are born with some form of congenital heart defect. Many serious forms of CHD can now be surgically corrected after birth, which has led to improved survival into adulthood. However, many patients require serial monitoring to evaluate progression of heart failure and determine timing of interventions. Accurate multidimensional quantification of regional heart shape and function is required for characterizing these patients. A computational atlas of single ventricle and biventricular heart shape and function enables quantification of remodeling in terms of z scores in relation to specific reference populations. Progression of disease can then be monitored effectively by longitudinal evaluation of z scores. A biomechanical analysis of cardiac function in relation to population variation enables investigation of the underlying mechanisms for developing pathology. Here, we summarize recent progress in this field, with examples in single ventricle and biventricular congenital pathologies.


Assuntos
Atlas como Assunto , Cardiopatias Congênitas/diagnóstico por imagem , Modelos Cardiovasculares , Modelagem Computacional Específica para o Paciente , Tomada de Decisão Clínica , Progressão da Doença , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/terapia , Humanos , Seleção de Pacientes , Assistência Centrada no Paciente/métodos , Prognóstico , Fatores de Tempo , Função Ventricular , Remodelação Ventricular
16.
IEEE J Biomed Health Inform ; 22(2): 503-515, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28103561

RESUMO

Statistical shape modeling is a powerful tool for visualizing and quantifying geometric and functional patterns of the heart. After myocardial infarction (MI), the left ventricle typically remodels in response to physiological challenges. Several methods have been proposed in the literature to describe statistical shape changes. Which method best characterizes left ventricular remodeling after MI is an open research question. A better descriptor of remodeling is expected to provide a more accurate evaluation of disease status in MI patients. We therefore designed a challenge to test shape characterization in MI given a set of three-dimensional left ventricular surface points. The training set comprised 100 MI patients, and 100 asymptomatic volunteers (AV). The challenge was initiated in 2015 at the Statistical Atlases and Computational Models of the Heart workshop, in conjunction with the MICCAI conference. The training set with labels was provided to participants, who were asked to submit the likelihood of MI from a different (validation) set of 200 cases (100 AV and 100 MI). Sensitivity, specificity, accuracy and area under the receiver operating characteristic curve were used as the outcome measures. The goals of this challenge were to (1) establish a common dataset for evaluating statistical shape modeling algorithms in MI, and (2) test whether statistical shape modeling provides additional information characterizing MI patients over standard clinical measures. Eleven groups with a wide variety of classification and feature extraction approaches participated in this challenge. All methods achieved excellent classification results with accuracy ranges from 0.83 to 0.98. The areas under the receiver operating characteristic curves were all above 0.90. Four methods showed significantly higher performance than standard clinical measures. The dataset and software for evaluation are available from the Cardiac Atlas Project website1.

17.
Int J Cardiovasc Imaging ; 34(2): 281-291, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28836039

RESUMO

UK Biobank, a large cohort study, plans to acquire 100,000 cardiac MRI studies by 2020. Although fully-automated left ventricular (LV) analysis was performed in the original acquisition, this was not designed for unsupervised incorporation into epidemiological studies. We sought to evaluate automated LV mass and volume (Siemens syngo InlineVF versions D13A and E11C), against manual analysis in a substantial sub-cohort of UK Biobank participants. Eight readers from two centers, trained to give consistent results, manually analyzed 4874 UK Biobank cases for LV end-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF) and LV mass (LVM). Agreement between manual and InlineVF automated analyses were evaluated using Bland-Altman analysis and the intra-class correlation coefficient (ICC). Tenfold cross-validation was used to establish a linear regression calibration between manual and InlineVF results. InlineVF D13A returned results in 4423 cases, whereas InlineVF E11C returned results in 4775 cases and also reported LVM. Rapid visual assessment of the E11C results found 178 cases (3.7%) with grossly misplaced contours or landmarks. In the remaining 4597 cases, LV function showed good agreement: ESV -6.4 ± 9.0 ml, 0.853 (mean ± SD of the differences, ICC) EDV -3.0 ± 11.6 ml, 0.937; SV 3.4 ± 9.8 ml, 0.855; and EF 3.5 ± 5.1%, 0.586. Although LV mass was consistently overestimated (29.9 ± 17.0 g, 0.534) due to larger epicardial contours on all slices, linear regression could be used to correct the bias and improve accuracy. Automated InlineVF results can be used for case-control studies in UK Biobank, provided visual quality control and linear bias correction are performed. Improvements between InlineVF D13A and InlineVF E11C show the field is rapidly advancing, with further improvements expected in the near future.


Assuntos
Cardiopatias/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Volume Sistólico , Função Ventricular Esquerda , Idoso , Algoritmos , Automação , Feminino , Cardiopatias/fisiopatologia , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Reino Unido
18.
Sci Rep ; 7(1): 12259, 2017 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-28947754

RESUMO

We characterized motion attributes arising from LV spatio-temporal analysis of motion distributions in myocardial infarction. Time-varying 3D finite element shape models were obtained in 300 Controls and 300 patients with myocardial infarction. Inter-individual left ventricular shape differences were eliminated using parallel transport to the grand mean of all cases. The first three principal component (PC) scores were used to characterize trajectory attributes. Scores were tested with ANOVA/MANOVA using patient disease status (Infarcts vs. Controls) as a factor. Infarcted patients had significantly different magnitude, orientation and shape of left ventricular trajectories in comparison to Controls. Significant differences were found for the angle between PC scores 1 and 2 in the endocardium, and PC scores 1 and 3 in the epicardium. The largest differences were found in the magnitude of endocardial motion. Endocardial PC scores in shape space showed the highest classification power using support vector machine, with higher total accuracy in comparison to previous methods. Shape space performed better than size-and-shape space for both epicardial and endocardial features. In conclusion, LV spatio-temporal motion attributes accurately characterize the presence of infarction. This approach is easily generalizable to different pathologies, enabling more precise study of the pathophysiological consequences of a wide spectrum of cardiac diseases.


Assuntos
Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/fisiopatologia , Imageamento Tridimensional/normas , Imageamento por Ressonância Magnética/normas , Movimento (Física) , Infarto do Miocárdio/diagnóstico por imagem , Infarto do Miocárdio/fisiopatologia , Ventrículos do Coração/patologia , Humanos , Infarto do Miocárdio/patologia , Análise Espaço-Temporal
19.
IEEE J Biomed Health Inform ; 21(5): 1315-1326, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28880152

RESUMO

Cardiac magnetic resonance perfusion examinations enable noninvasive quantification of myocardial blood flow. However, motion between frames due to breathing must be corrected for quantitative analysis. Although several methods have been proposed, there is a lack of widely available benchmarks to compare different algorithms. We sought to compare many algorithms from several groups in an open benchmark challenge. Nine clinical studies from two different centers comprising normal and diseased myocardium at both rest and stress were made available for this study. The primary validation measure was regional myocardial blood flow based on the transfer coefficient (Ktrans), which was computed using a compartment model and the myocardial perfusion reserve (MPR) index. The ground truth was calculated using contours drawn manually on all frames by a single observer, and visually inspected by a second observer. Six groups participated and 19 different motion correction algorithms were compared. Each method used one of three different motion models: rigid, global affine, or local deformation. The similarity metric also varied with methods employing either sum-of-squared differences, mutual information, or cross correlation. There were no significant differences in Ktrans or MPR compared across different motion models or similarity metrics. Compared with the ground truth, only Ktrans for the sum-of-squared differences metric, and for local deformation motion models, had significant bias. In conclusion, the open benchmark enabled evaluation of clinical perfusion indices over a wide range of methods. In particular, there was no benefit of nonrigid registration techniques over the other methods evaluated in this study. The benchmark data and results are available from the Cardiac Atlas Project ( www.cardiacatlas.org).


Assuntos
Técnicas de Imagem Cardíaca , Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador , Angiografia por Ressonância Magnética , Movimento/fisiologia , Algoritmos , Benchmarking , Técnicas de Imagem Cardíaca/métodos , Técnicas de Imagem Cardíaca/normas , Humanos , Processamento de Imagem Assistida por Computador/métodos , Processamento de Imagem Assistida por Computador/normas , Angiografia por Ressonância Magnética/métodos , Angiografia por Ressonância Magnética/normas
20.
Gigascience ; 6(3): 1-15, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28327972

RESUMO

BACKGROUND: Left ventricular size and shape are important for quantifying cardiac remodeling in response to cardiovascular disease. Geometric remodeling indices have been shown to have prognostic value in predicting adverse events in the clinical literature, but these often describe interrelated shape changes. We developed a novel method for deriving orthogonal remodeling components directly from any (moderately independent) set of clinical remodeling indices. RESULTS: Six clinical remodeling indices (end-diastolic volume index, sphericity, relative wall thickness, ejection fraction, apical conicity, and longitudinal shortening) were evaluated using cardiac magnetic resonance images of 300 patients with myocardial infarction, and 1991 asymptomatic subjects, obtained from the Cardiac Atlas Project. Partial least squares (PLS) regression of left ventricular shape models resulted in remodeling components that were optimally associated with each remodeling index. A Gram-Schmidt orthogonalization process, by which remodeling components were successively removed from the shape space in the order of shape variance explained, resulted in a set of orthonormal remodeling components. Remodeling scores could then be calculated that quantify the amount of each remodeling component present in each case. A one-factor PLS regression led to more decoupling between scores from the different remodeling components across the entire cohort, and zero correlation between clinical indices and subsequent scores. CONCLUSIONS: The PLS orthogonal remodeling components had similar power to describe differences between myocardial infarction patients and asymptomatic subjects as principal component analysis, but were better associated with well-understood clinical indices of cardiac remodeling. The data and analyses are available from www.cardiacatlas.org.


Assuntos
Modelos Cardiovasculares , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Função Ventricular Esquerda , Remodelação Ventricular , Adulto , Idoso , Idoso de 80 Anos ou mais , Algoritmos , Doenças Assintomáticas , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Estatísticos , Infarto do Miocárdio/diagnóstico , Curva ROC , Reprodutibilidade dos Testes , Fatores de Risco , Volume Sistólico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA