Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 293(44): 16994-17007, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30206123

RESUMO

AMP-activated protein kinase (AMPK) is a master regulator of energy homeostasis and a promising drug target for managing metabolic diseases such as type 2 diabetes. Many pharmacological AMPK activators, and possibly unidentified physiological metabolites, bind to the allosteric drug and metabolite (ADaM) site at the interface between the kinase domain (KD) in the α-subunit and the carbohydrate-binding module (CBM) in the ß-subunit. Here, using double electron-electron resonance (DEER) spectroscopy, we demonstrate that the CBM-KD interaction is partially dissociated and the interface highly disordered in the absence of pharmacological ADaM site activators as inferred from a low depth of modulation and broad DEER distance distributions. ADaM site ligands such as 991, and to a lesser degree phosphorylation, stabilize the KD-CBM association and strikingly reduce conformational heterogeneity in the ADaM site. Our findings that the ADaM site, formed by the KD-CBM interaction, can be modulated by diverse ligands and by phosphorylation suggest that it may function as a hub for integrating regulatory signals.


Assuntos
Proteínas Quinases Ativadas por AMP/química , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Regulação Alostérica , Benzimidazóis/química , Benzimidazóis/metabolismo , Benzoatos/química , Benzoatos/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Humanos , Ligantes , Conformação Proteica , Domínios Proteicos
2.
Sci Data ; 3: 160021, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27070998

RESUMO

Serial femtosecond X-ray crystallography (SFX) using an X-ray free electron laser (XFEL) is a recent advancement in structural biology for solving crystal structures of challenging membrane proteins, including G-protein coupled receptors (GPCRs), which often only produce microcrystals. An XFEL delivers highly intense X-ray pulses of femtosecond duration short enough to enable the collection of single diffraction images before significant radiation damage to crystals sets in. Here we report the deposition of the XFEL data and provide further details on crystallization, XFEL data collection and analysis, structure determination, and the validation of the structural model. The rhodopsin-arrestin crystal structure solved with SFX represents the first near-atomic resolution structure of a GPCR-arrestin complex, provides structural insights into understanding of arrestin-mediated GPCR signaling, and demonstrates the great potential of this SFX-XFEL technology for accelerating crystal structure determination of challenging proteins and protein complexes.


Assuntos
Arrestina/química , Rodopsina/química , Animais , Cristalização , Cristalografia por Raios X , Humanos , Camundongos , Modelos Químicos , Relação Estrutura-Atividade
3.
Nature ; 523(7562): 561-7, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26200343

RESUMO

G-protein-coupled receptors (GPCRs) signal primarily through G proteins or arrestins. Arrestin binding to GPCRs blocks G protein interaction and redirects signalling to numerous G-protein-independent pathways. Here we report the crystal structure of a constitutively active form of human rhodopsin bound to a pre-activated form of the mouse visual arrestin, determined by serial femtosecond X-ray laser crystallography. Together with extensive biochemical and mutagenesis data, the structure reveals an overall architecture of the rhodopsin-arrestin assembly in which rhodopsin uses distinct structural elements, including transmembrane helix 7 and helix 8, to recruit arrestin. Correspondingly, arrestin adopts the pre-activated conformation, with a ∼20° rotation between the amino and carboxy domains, which opens up a cleft in arrestin to accommodate a short helix formed by the second intracellular loop of rhodopsin. This structure provides a basis for understanding GPCR-mediated arrestin-biased signalling and demonstrates the power of X-ray lasers for advancing the frontiers of structural biology.


Assuntos
Arrestina/química , Arrestina/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Animais , Sítios de Ligação , Cristalografia por Raios X , Dissulfetos/química , Dissulfetos/metabolismo , Humanos , Lasers , Camundongos , Modelos Moleculares , Complexos Multiproteicos/biossíntese , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Ligação Proteica , Reprodutibilidade dos Testes , Transdução de Sinais , Raios X
4.
Proc Natl Acad Sci U S A ; 111(2): 839-44, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24379397

RESUMO

Small heterodimer partner (SHP) is an orphan nuclear receptor that functions as a transcriptional repressor to regulate bile acid and cholesterol homeostasis. Although the precise mechanism whereby SHP represses transcription is not known, E1A-like inhibitor of differentiation (EID1) was isolated as a SHP-interacting protein and implicated in SHP repression. Here we present the crystal structure of SHP in complex with EID1, which reveals an unexpected EID1-binding site on SHP. Unlike the classical cofactor-binding site near the C-terminal helix H12, the EID1-binding site is located at the N terminus of the receptor, where EID1 mimics helix H1 of the nuclear receptor ligand-binding domain. The residues composing the SHP-EID1 interface are highly conserved. Their mutation diminishes SHP-EID1 interactions and affects SHP repressor activity. Together, these results provide important structural insights into SHP cofactor recruitment and repressor function and reveal a conserved protein interface that is likely to have broad implications for transcriptional repression by orphan nuclear receptors.


Assuntos
Modelos Moleculares , Proteínas Nucleares/química , Conformação Proteica , Receptores Citoplasmáticos e Nucleares/química , Proteínas Repressoras/química , Ácidos e Sais Biliares/metabolismo , Sítios de Ligação/genética , Proteínas de Ciclo Celular , Linhagem Celular , Colesterol/metabolismo , Cristalização , Desenho de Fármacos , Homeostase/genética , Homeostase/fisiologia , Humanos , Receptores Citoplasmáticos e Nucleares/metabolismo
5.
PLoS One ; 7(10): e47857, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23112859

RESUMO

Abscisic acid (ABA) is a plant hormone that plays important roles in growth and development. ABA is also the central regulator to protect plants against abiotic stresses, such as drought, high salinity, and adverse temperatures, and ABA signaling is therefore a promising biotechnological target for the generation of crops with increased stress resistance. Recently, a core signal transduction pathway has been established, in which ABA receptors, type 2C protein phosphatases, and AMPK-related protein kinases control the regulation of transcription factors, ion channels, and enzymes. Here we use a simple protein thermal stability shift assay to independently validate key aspects of this pathway and to demonstrate the usefulness of this technique to detect and characterize very weak (Kd ≥ 50 µM) interactions between receptors and physiological and synthetic agonists, to determine and analyze protein-protein interactions, and to screen small molecule inhibitors.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Arabidopsis/química , Proteínas de Arabidopsis/química , Ligação Proteica , Mapeamento de Interação de Proteínas , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Estabilidade Proteica , Receptores de Superfície Celular , Temperatura
6.
Proc Natl Acad Sci U S A ; 109(40): 16137-42, 2012 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-22988100

RESUMO

MicroRNA-34a (miR-34a) is the most highly elevated hepatic miR in obese mice and is also substantially elevated in patients who have steatosis, but its role in obesity and metabolic dysfunction remains unclear. After a meal, FGF19 is secreted from the ileum; binds to a hepatic membrane receptor complex, FGF19 receptor 4 and coreceptor ß-Klotho (ßKL); and mediates postprandial responses under physiological conditions, but hepatic responses to FGF19 signaling were shown to be impaired in patients with steatosis. Here, we show an unexpected functional link between aberrantly elevated miR-34a and impaired ßKL/FGF19 signaling in obesity. In vitro studies show that miR-34a down-regulates ßKL by binding to the 3' UTR of ßKL mRNA. Adenoviral-mediated overexpression of miR-34a in mice decreased hepatic ßKL levels, impaired FGF19-activated ERK and glycogen synthase kinase signaling, and altered expression of FGF19 metabolic target genes. Consistent with these results, ßKL levels were decreased and hepatic responses to FGF19 were severely impaired in dietary obese mice that have elevated miR-34a. Remarkably, in vivo antisense inhibition of miR-34a in obese mice partially restored ßKL levels and improved FGF19 target gene expression and metabolic outcomes, including decreased liver fat. Further, anti-miR-34a treatment in primary hepatocytes of obese mice restored FGF19-activated ERK and glycogen synthase kinase signaling in a ßKL-dependent manner. These results indicate that aberrantly elevated miR-34a in obesity attenuates hepatic FGF19 signaling by directly targeting ßKL. The miR-34a/ßKL/FGF19 axis may present unique therapeutic targets for FGF19-related human diseases, including metabolic disorders and cancer.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Fígado/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Obesidade/metabolismo , Período Pós-Prandial/fisiologia , Transdução de Sinais/fisiologia , Animais , Primers do DNA/genética , Humanos , Proteínas Klotho , Luciferases , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Obesidade/fisiopatologia , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
7.
Plant Signal Behav ; 7(5): 581-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22516825

RESUMO

Abscisic acid (ABA) is an essential hormone that controls plant growth, development and responses to abiotic stresses. ABA signaling is mediated by type 2C protein phosphatases (PP2Cs), including HAB1 and ABI2, which inhibit stress-activated SnRK2 kinases and whose activity is regulated by ABA and ABA receptors. Based on biochemical data and our previously determined crystal structures of ABI2 and the SnRK2.6-HAB1 complex, we present the catalytic mechanism of PP2C and provide new insight into PP2C-SnRK2 interactions and possible roles of other SnRK2 kinases in ABA signaling.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexos Multiproteicos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Sequência de Aminoácidos , Arabidopsis/química , Proteínas de Arabidopsis/química , Dados de Sequência Molecular , Complexos Multiproteicos/química , Fosfoproteínas Fosfatases/química , Proteína Fosfatase 2C , Proteínas Serina-Treonina Quinases/química , Transdução de Sinais , Estresse Fisiológico
8.
Science ; 335(6064): 85-8, 2012 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-22116026

RESUMO

Abscisic acid (ABA) is an essential hormone for plants to survive environmental stresses. At the center of the ABA signaling network is a subfamily of type 2C protein phosphatases (PP2Cs), which form exclusive interactions with ABA receptors and subfamily 2 Snfl-related kinase (SnRK2s). Here, we report a SnRK2-PP2C complex structure, which reveals marked similarity in PP2C recognition by SnRK2 and ABA receptors. In the complex, the kinase activation loop docks into the active site of PP2C, while the conserved ABA-sensing tryptophan of PP2C inserts into the kinase catalytic cleft, thus mimicking receptor-PP2C interactions. These structural results provide a simple mechanism that directly couples ABA binding to SnRK2 kinase activation and highlight a new paradigm of kinase-phosphatase regulation through mutual packing of their catalytic sites.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mimetismo Molecular , Fosfoproteínas Fosfatases/química , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Ácido Abscísico/química , Sequência de Aminoácidos , Arabidopsis/química , Proteínas de Arabidopsis/antagonistas & inibidores , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais
9.
Proc Natl Acad Sci U S A ; 108(52): 21259-64, 2011 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-22160701

RESUMO

Abscisic acid (ABA) is an essential hormone that controls plant growth, development, and responses to abiotic stresses. Central for ABA signaling is the ABA-mediated autoactivation of three monomeric Snf1-related kinases (SnRK2.2, -2.3, and -2.6). In the absence of ABA, SnRK2s are kept in an inactive state by forming physical complexes with type 2C protein phosphatases (PP2Cs). Upon relief of this inhibition, SnRK2 kinases can autoactivate through unknown mechanisms. Here, we report the crystal structures of full-length Arabidopsis thaliana SnRK2.3 and SnRK2.6 at 1.9- and 2.3-Å resolution, respectively. The structures, in combination with biochemical studies, reveal a two-step mechanism of intramolecular kinase activation that resembles the intermolecular activation of cyclin-dependent kinases. First, release of inhibition by PP2C allows the SnRK2s to become partially active because of an intramolecular stabilization of the catalytic domain by a conserved helix in the kinase regulatory domain. This stabilization enables SnRK2s to gain full activity by activation loop autophosphorylation. Autophosphorylation is more efficient in SnRK2.6, which has higher stability than SnRK2.3 and has well-structured activation loop phosphate acceptor sites that are positioned next to the catalytic site. Together, these data provide a structural framework that links ABA-mediated release of PP2C inhibition to activation of SnRK2 kinases.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Modelos Moleculares , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Cristalização , Ativação Enzimática , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteína Fosfatase 2C , Difração de Raios X
10.
J Biol Chem ; 286(4): 2877-85, 2011 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-21068381

RESUMO

Testicular receptors 2 and 4 (TR2/4) constitute a subgroup of orphan nuclear receptors that play important roles in spermatogenesis, lipid and lipoprotein regulation, and the development of the central nervous system. Currently, little is known about the structural features and the ligand regulation of these receptors. Here we report the crystal structure of the ligand-free TR4 ligand binding domain, which reveals an autorepressed conformation. The ligand binding pocket of TR4 is filled by the C-terminal half of helix 10, and the cofactor binding site is occupied by the AF-2 helix, thus preventing ligand-independent activation of the receptor. However, TR4 exhibits constitutive transcriptional activity on multiple promoters, which can be further potentiated by nuclear receptor coactivators. Mutations designed to disrupt cofactor binding, dimerization, or ligand binding substantially reduce the transcriptional activity of this receptor. Importantly, both retinol and retinoic acid are able to promote TR4 to recruit coactivators and to activate a TR4-regulated reporter. These findings demonstrate that TR4 is a ligand-regulated nuclear receptor and suggest that retinoids might have a much wider regulatory role via activation of orphan receptors such as TR4.


Assuntos
Receptores de Esteroides/química , Receptores de Esteroides/metabolismo , Receptores dos Hormônios Tireóideos/química , Receptores dos Hormônios Tireóideos/metabolismo , Vitamina A/química , Vitaminas/química , Animais , Sítios de Ligação , Células COS , Chlorocebus aethiops , Humanos , Mutação , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Esteroides/genética , Receptores dos Hormônios Tireóideos/genética , Relação Estrutura-Atividade , Vitamina A/farmacologia , Vitaminas/farmacologia
11.
Nat Struct Mol Biol ; 17(9): 1102-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20729862

RESUMO

The phytohormone abscisic acid (ABA) functions through a family of fourteen PYR/PYL receptors, which were identified by resistance to pyrabactin, a synthetic inhibitor of seed germination. ABA activates these receptors to inhibit type 2C protein phosphatases, such as ABI1, yet it remains unclear whether these receptors can be antagonized. Here we demonstrate that pyrabactin is an agonist of PYR1 and PYL1 but is unexpectedly an antagonist of PYL2. Crystal structures of the PYL2-pyrabactin and PYL1-pyrabactin-ABI1 complexes reveal the mechanism responsible for receptor-selective activation and inhibition, which enables us to design mutations that convert PYL1 to a pyrabactin-inhibited receptor and PYL2 to a pyrabactin-activated receptor and to identify new pyrabactin-based ABA receptor agonists. Together, our results establish a new concept of ABA receptor antagonism, illustrate its underlying mechanisms and provide a rational framework for discovering novel ABA receptor ligands.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Membrana Transportadoras/química , Naftalenos/química , Sulfonamidas/química , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/antagonistas & inibidores , Cristalografia por Raios X , Modelos Moleculares , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína
12.
J Biol Chem ; 285(12): 9161-71, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20086010

RESUMO

Transcription activation by androgen receptor (AR), which depends on recruitment of coactivators, is required for the initiation and progression of prostate cancer, yet the mechanisms of how hormone-activated AR interacts with coactivators remain unclear. This is because AR, unlike any other nuclear receptor, prefers its own N-terminal FXXLF motif to the canonical LXXLL motifs of coactivators. Through biochemical and crystallographic studies, we identify that steroid receptor coactivator-3 (SRC3) (also named as amplified in breast cancer-1 or AIB1) interacts strongly with AR via synergistic binding of its first and third LXXLL motifs. Mutagenesis and functional studies confirm that SRC3 is a preferred coactivator for hormone-activated AR. Importantly, AR mutations found in prostate cancer patients correlate with their binding potency to SRC3, corroborating with the emerging role of SRC3 as a prostate cancer oncogene. These results provide a molecular mechanism for the selective utilization of SRC3 by hormone-activated AR, and they link the functional relationship between AR and SRC3 to the development and growth of prostate cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Regulação da Expressão Gênica , Coativador 3 de Receptor Nuclear/metabolismo , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Motivos de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Cristalografia por Raios X/métodos , Humanos , Concentração Inibidora 50 , Masculino , Mutagênese , Mutação , Ligação Proteica , Estrutura Terciária de Proteína
13.
Nature ; 462(7273): 602-8, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19898420

RESUMO

Abscisic acid (ABA) is a ubiquitous hormone that regulates plant growth, development and responses to environmental stresses. Its action is mediated by the PYR/PYL/RCAR family of START proteins, but it remains unclear how these receptors bind ABA and, in turn, how hormone binding leads to inhibition of the downstream type 2C protein phosphatase (PP2C) effectors. Here we report crystal structures of apo and ABA-bound receptors as well as a ternary PYL2-ABA-PP2C complex. The apo receptors contain an open ligand-binding pocket flanked by a gate that closes in response to ABA by way of conformational changes in two highly conserved beta-loops that serve as a gate and latch. Moreover, ABA-induced closure of the gate creates a surface that enables the receptor to dock into and competitively inhibit the PP2C active site. A conserved tryptophan in the PP2C inserts directly between the gate and latch, which functions to further lock the receptor in a closed conformation. Together, our results identify a conserved gate-latch-lock mechanism underlying ABA signalling.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Modelos Moleculares , Transdução de Sinais/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Análise Mutacional de DNA , Plantas Geneticamente Modificadas , Ligação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA