Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 21527, 2024 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-39277608

RESUMO

Microphthalmia-associated transcription factor (MITF) is a master regulator of melanocyte function, development and plays a significant role in melanoma pathogenesis. MITF genomic amplification promotes melanoma development, and it can facilitate resistance to multiple therapies. Here, we show that MITF regulates a global antioxidant program that increases survival of melanoma cell lines by protecting the cells from reactive oxygen species (ROS)-induced damage. In addition, this redox program is correlated with MITF expression in human melanoma cell lines and patient-derived melanoma samples. Using a zebrafish melanoma model, we show that MITF decreases ROS-mediated DNA damage in vivo. Some of the MITF target genes involved, such as IDH1 and NNT, are regulated through direct MITF binding to canonical enhancer box (E-BOX) sequences proximal to their promoters. Utilizing functional experiments, we demonstrate the role of MITF and its target genes in reducing cytosolic and mitochondrial ROS. Collectively, our data identify MITF as a significant driver of the cellular antioxidant state.


Assuntos
Regulação Neoplásica da Expressão Gênica , Isocitrato Desidrogenase , Melanoma , Fator de Transcrição Associado à Microftalmia , Espécies Reativas de Oxigênio , Peixe-Zebra , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/genética , Espécies Reativas de Oxigênio/metabolismo , Melanoma/genética , Melanoma/metabolismo , Melanoma/patologia , Animais , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Linhagem Celular Tumoral , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Dano ao DNA , Transcrição Gênica
2.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38979226

RESUMO

Cancer cells show remarkable plasticity and can switch lineages in response to the tumor microenvironment. Cellular plasticity drives invasiveness and metastasis and helps cancer cells to evade therapy by developing resistance to radiation and cytotoxic chemotherapy. Increased understanding of cell fate determination through epigenetic reprogramming is critical to discover how cancer cells achieve transcriptomic and phenotypic plasticity. Glioblastoma is a perfect example of cancer evolution where cells retain an inherent level of plasticity through activation or maintenance of progenitor developmental programs. However, the principles governing epigenetic drivers of cellular plasticity in glioblastoma remain poorly understood. Here, using machine learning (ML) we employ cross-patient prediction of transcript expression using a combination of epigenetic features (ATAC-seq, CTCF ChIP-seq, RNAPII ChIP-seq, H3K27Ac ChIP-seq, and RNA-seq) of glioblastoma stem cells (GSCs). We investigate different ML and deep learning (DL) models for this task and build our final pipeline using XGBoost. The model trained on one patient generalizes to another one suggesting that the epigenetic signals governing gene transcription are consistent across patients even if GSCs can be very different. We demonstrate that H3K27Ac is the epigenetic feature providing the most significant contribution to cross-patient prediction of gene expression. In addition, using H3K27Ac signals from patients-derived GSCs, we can predict gene expression of human neural crest stem cells suggesting a shared developmental epigenetic trajectory between subpopulations of these malignant and benign stem cells. Our cross-patient ML/DL models determine weighted patterns of influence of epigenetic marks on gene expression across patients with glioblastoma and between GSCs and neural crest stem cells. We propose that broader application of this analysis could reshape our view of glioblastoma tumor evolution and inform the design of new epigenetic targeting therapies.

3.
bioRxiv ; 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014031

RESUMO

Microphthalmia-associated transcription factor (MITF) plays pivotal roles in melanocyte development, function, and melanoma pathogenesis. MITF amplification occurs in melanoma and has been associated with resistance to targeted therapies. Here, we show that MITF regulates a global antioxidant program that increases survival of melanoma cell lines by protecting the cells from reactive oxygen species (ROS)-induced damage. In addition, this redox program is correlated with MITF expression in human melanoma cell lines and patient-derived melanoma samples. Using a zebrafish melanoma model, we show that MITF decreases ROS-mediated DNA damage in vivo . Some of the MITF target genes involved, such as IDH1 and NNT , are regulated through direct MITF binding to canonical enhancer box (E-BOX) sequences proximal to their promoters. Utilizing functional experiments, we demonstrate the role of MITF and its target genes in reducing cytosolic and mitochondrial ROS. Collectively, our data identify MITF as a significant driver of the cellular antioxidant state. One Sentence Summary: MITF promote melanoma survival via increasing ROS tolerance.

4.
Commun Biol ; 6(1): 65, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653474

RESUMO

Human cancers often re-express germline factors, yet their mechanistic role in oncogenesis and cancer progression remains unknown. Here we demonstrate that DEAD-box helicase 4 (DDX4), a germline factor and RNA helicase conserved in all multicellular organisms, contributes to increased cell motility and cisplatin-mediated drug resistance in small cell lung cancer (SCLC) cells. Proteomic analysis suggests that DDX4 expression upregulates proteins related to DNA repair and immune/inflammatory response. Consistent with these trends in cell lines, DDX4 depletion compromised in vivo tumor development while its overexpression enhanced tumor growth even after cisplatin treatment in nude mice. Further, the relatively higher DDX4 expression in SCLC patients correlates with decreased survival and shows increased expression of immune/inflammatory response markers. Taken together, we propose that DDX4 increases SCLC cell survival, by increasing the DNA damage and immune response pathways, especially under challenging conditions such as cisplatin treatment.


Assuntos
Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Camundongos , Animais , Humanos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/genética , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Camundongos Nus , Proteômica , Células Germinativas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo
5.
Cell ; 184(16): 4268-4283.e20, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34233163

RESUMO

Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.


Assuntos
Fator de Transcrição Associado à Microftalmia/metabolismo , NADP Trans-Hidrogenases/metabolismo , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta , Animais , Linhagem Celular , Estudos de Coortes , AMP Cíclico/metabolismo , Dano ao DNA , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Predisposição Genética para Doença , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanossomas/efeitos dos fármacos , Melanossomas/metabolismo , Melanossomas/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , NADP Trans-Hidrogenases/antagonistas & inibidores , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Polimorfismo de Nucleotídeo Único/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteólise/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pigmentação da Pele/efeitos dos fármacos , Pigmentação da Pele/genética , Ubiquitina/metabolismo , Peixe-Zebra
6.
Pharmaceutics ; 13(4)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918635

RESUMO

Nanomedicines have shown great potential in cancer therapy; in particular, the combination of chemotherapy and immunotherapy (namely chemoimmunotherapy) that is revolutionizing cancer treatment. Currently, most nanomedicines for chemoimmunotherapy are still in preclinical and clinical trials. Lipid-based nanoparticles, the most widely used nanomedicine platform in cancer therapy, is a promising delivery platform for chemoimmunotherapy. In this review, we introduce the commonly used immunotherapy agents and discuss the opportunities for chemoimmunotherapy mediated by lipid-based nanoparticles. We summarize the clinical trials involving lipid-based nanoparticles for chemoimmunotherapy. We also highlight different chemoimmunotherapy strategies based on lipid-based nanoparticles such as liposomes, nanodiscs, and lipid-based hybrid nanoparticles in preclinical research. Finally, we discuss the challenges that have hindered the clinical translation of lipid-based nanoparticles for chemoimmunotherapy, and their future perspectives.

7.
J Biomed Opt ; 22(12): 1-10, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29222855

RESUMO

Chemical sun filters are commonly used as active ingredients in sunscreens due to their efficient absorption of ultraviolet (UV) radiation. Yet, it is known that these compounds can photochemically react with UV light and generate reactive oxygen species and oxidative stress in vitro, though this has yet to be validated in vivo. One label-free approach to probe oxidative stress is to measure and compare the relative endogenous fluorescence generated by cellular coenzymes nicotinamide adenine dinucleotides and flavin adenine dinucleotides. However, chemical sun filters are fluorescent, with emissive properties that contaminate endogenous fluorescent signals. To accurately distinguish the source of fluorescence in ex vivo skin samples treated with chemical sun filters, fluorescence lifetime imaging microscopy data were processed on a pixel-by-pixel basis using a non-Euclidean separation algorithm based on Mahalanobis distance and validated on simulated data. Applying this method, ex vivo samples exhibited a small oxidative shift when exposed to sun filters alone, though this shift was much smaller than that imparted by UV irradiation. Given the need for investigative tools to further study the clinical impact of chemical sun filters in patients, the reported methodology may be applied to visualize chemical sun filters and measure oxidative stress in patients' skin.


Assuntos
Microscopia de Fluorescência , Estresse Oxidativo/efeitos dos fármacos , Pele/efeitos dos fármacos , Protetores Solares/farmacologia , Humanos , Pele/patologia
8.
Nat Commun ; 8(1): 1022, 2017 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-29044103

RESUMO

Ectopic expression of lineage master regulators induces transdifferentiation. Whether cell fate transitions can be induced during various developmental stages has not been systemically examined. Here we discover that amongst different developmental stages, mouse embryonic stem cells (mESCs) are resistant to cell fate conversion induced by the melanocyte lineage master regulator MITF. By generating a transgenic system we exhibit that in mESCs, the pluripotency master regulator Oct4, counteracts pro-differentiation induced by Mitf by physical interference with MITF transcriptional activity. We further demonstrate that mESCs must be released from Oct4-maintained pluripotency prior to ectopically induced differentiation. Moreover, Oct4 induction in various differentiated cells represses their lineage identity in vivo. Alongside, chromatin architecture combined with ChIP-seq analysis suggest that Oct4 competes with various lineage master regulators for binding promoters and enhancers. Our analysis reveals pluripotency and transdifferentiation regulatory principles and could open new opportunities in the field of regenerative medicine.


Assuntos
Diferenciação Celular/genética , Fator de Transcrição Associado à Microftalmia/genética , Células-Tronco Embrionárias Murinas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Animais , Linhagem Celular Tumoral , Transdiferenciação Celular/genética , Células Cultivadas , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Camundongos Transgênicos , Fator de Transcrição Associado à Microftalmia/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Fator 3 de Transcrição de Octâmero/metabolismo
9.
Cell Rep ; 19(11): 2177-2184, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28614705

RESUMO

The presence of dark melanin (eumelanin) within human epidermis represents one of the strongest predictors of low skin cancer risk. Topical rescue of eumelanin synthesis, previously achieved in "redhaired" Mc1r-deficient mice, demonstrated significant protection against UV damage. However, application of a topical strategy for human skin pigmentation has not been achieved, largely due to the greater barrier function of human epidermis. Salt-inducible kinase (SIK) has been demonstrated to regulate MITF, the master regulator of pigment gene expression, through its effects on CRTC and CREB activity. Here, we describe the development of small-molecule SIK inhibitors that were optimized for human skin penetration, resulting in MITF upregulation and induction of melanogenesis. When topically applied, pigment production was induced in Mc1r-deficient mice and normal human skin. These findings demonstrate a realistic pathway toward UV-independent topical modulation of human skin pigmentation, potentially impacting UV protection and skin cancer risk.


Assuntos
Melaninas/metabolismo , Pele/metabolismo , Raios Ultravioleta/efeitos adversos , Administração Tópica , Animais , Humanos , Melaninas/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA