Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 99(3): 901-905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825924

RESUMO

The study evaluates compatibility of stabilizers with dye doped liquid crystal (LC) scaffolds that are used in electronically dimmable materials. The photodegradation of the materials was investigated and suitable stabilizers were evaluated to slow the degradation process. Various types of benzotriazole-based stabilizers were evaluated for stabilizing the liquid crystals. Based on spin trapping experiments, radicals generated upon UV exposure is likely responsible for the degradation of the system. The radical generation is competitively inhibited by the addition of stabilizers.

2.
Phys Rev E ; 93(3): 032701, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27078421

RESUMO

Photoinduced order-increasing phase transitions can occur in dye-liquid crystal mixtures when the photoproduct of the excitation of the dye molecules is more compatible with the liquid crystalline medium than the initial dye species. A detailed investigation of the photoinduced changes of the phase behavior and optical properties of mixtures of liquid crystals with naphthopyran guests upon exposure to light at 365 nm is presented here. In these guest-host systems, the nematic-to-isotropic phase transition temperature is increased upon irradiation. We show that the nematic range can be extended up to 2.9 °C by illumination in 5CB (4-n-pentyl-4'-cyanobiphenyl) liquid crystal mixtures. The order parameter is significantly increased by illumination at all temperatures within the nematic range and the changes are larger at higher concentrations of the guests. In particular, the illuminated guest-host mixtures exhibit order parameters close to those of the neat liquid crystal host at the same temperature relative to the clearing point. An improved understanding of the photophysical processes taking place at the molecular level in these material systems can inform the design of photoresponsive materials and enhance their potential utility in optical or photonic devices.

3.
Nature ; 485(7398): 347-9, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22596158

RESUMO

Liquid crystals are traditionally classified as thermotropic, lyotropic or polymeric, based on the stimulus that governs the organization and order of the molecular system. The most widely known and applied class of liquid crystals are a subset of thermotropic liquid crystals known as calamitic, in which adding heat can result in phase transitions from or into the nematic, cholesteric and smectic mesophases. Photoresponsive liquid-crystal materials and mixtures can undergo isothermal phase transitions if light affects the order parameter of the system within a mesophase sufficiently. In nearly all previous examinations, light exposure of photoresponsive liquid-crystal materials and mixtures resulted in order-decreasing photo-induced isothermal phase transitions. Under specialized conditions, an increase in order with light exposure has been reported, despite the tendency of the photoresponsive liquid-crystal system to reduce order in the exposed state. A direct, photo-induced transition from the isotropic to the nematic phase has been observed in a mixture of spiropyran molecules and a nematic liquid crystal. Here we report a class of naphthopyran-based materials that exhibit photo-induced conformational changes in molecular structure capable of yielding order-increasing phase transitions. Appropriate functionalization of the naphthopyran molecules leads to an exceedingly large order parameter in the open form, which results in a clear to strongly absorbing dichroic state. The increase in order with light exposure has profound implications in optics, photonics, lasing and displays and will merit further consideration for applications in solar energy harvesting. The large, photo-induced dichroism exhibited by the material system has been long sought in ophthalmic applications such as photochromic and polarized variable transmission sunglasses.

5.
J Chem Phys ; 120(1): 337-44, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-15267294

RESUMO

The third order nonlinear optical properties of a trimer branched chromophore system and its linear molecule analog are investigated. Two-photon absorption and degenerate four wave mixing measurements were carried out on both systems. An enhancement in the nonlinear optical effect is observed for the branched trimer molecule in comparison to the linear chromophore system. Ultrafast time-resolved measurements were carried out to probe the excited state dynamics in the branched structures. The time-resolved measurements suggest that the two important processes affecting the nonlinear optical properties in the trimer system, charge transfer stabilization and initial electronic delocalization, occur on two different time scales.

6.
J Am Chem Soc ; 124(8): 1736-43, 2002 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-11853451

RESUMO

Measurements of ultrafast fluorescence anisotropy decay in model branched dendritic molecules of different symmetry are reported. These molecules contain the fundamental branching center units of larger dendrimer macromolecules with either three (C(3))- or four (T(d), tetrahedral)-fold symmetry. The anisotropy for a tetrahedral system is found to decay on a subpicosecond time scale (880 fs). This decay can be qualitatively explained by Förster-type incoherent energy migration between chromophores. Alternatively, for a nitrogen-centered trimer system, the fluorescence anisotropy decay time (35 fs) is found to be much shorter than that of the tetramers, and the decay cannot be attributed to an incoherent hopping mechanism. In this case, a coherent interchromophore energy transport mechanism should be considered. The mechanism of the ultrafast energy migration process in the branched systems is interpreted by use of a phenomenological quantum mechanical model, which examines the two extreme cases of incoherent and coherent interactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA