Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 73(12): 4236-4249, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35383843

RESUMO

Increasing grain number through fine-tuning duration of the late reproductive phase (LRP; terminal spikelet to anthesis) without altering anthesis time has been proposed as a genetic strategy to increase yield potential (YP) of wheat. Here we conducted a modelling analysis to evaluate the potential of fine-tuning LRP in raising YP in irrigated mega-environments. Using the known optimal anthesis and sowing date of current elite benchmark genotypes, we applied a gene-based phenology model for long-term simulations of phenological stages and yield-related variables of all potential germplasm with the same duration to anthesis as the benchmark genotypes. These diverse genotypes had the same duration to anthesis but varying LRP duration. Lengthening LRP increased YP and harvest index by increasing grain number to some extent and an excessively long LRP reduced YP due to reduced time for canopy construction for high biomass production of pre-anthesis phase. The current elite genotypes could have their LRP extended for higher YP in most sites. Genotypes with a ratio of the duration of LRP to pre-anthesis phase of about 0.42 ensured high yields (≥95% of YP) with their optimal sowing and anthesis dates. Optimization of intermediate growth stages could be further evaluated in breeding programmes to improve YP.


Assuntos
Melhoramento Vegetal , Triticum , Biomassa , Grão Comestível , Reprodução , Triticum/genética
2.
Nat Commun ; 13(1): 826, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35149708

RESUMO

Allopolyploidy greatly expands the range of possible regulatory interactions among functionally redundant homoeologous genes. However, connection between the emerging regulatory complexity and expression and phenotypic diversity in polyploid crops remains elusive. Here, we use diverse wheat accessions to map expression quantitative trait loci (eQTL) and evaluate their effects on the population-scale variation in homoeolog expression dosage. The relative contribution of cis- and trans-eQTL to homoeolog expression variation is strongly affected by both selection and demographic events. Though trans-acting effects play major role in expression regulation, the expression dosage of homoeologs is largely influenced by cis-acting variants, which appear to be subjected to selection. The frequency and expression of homoeologous gene alleles showing strong expression dosage bias are predictive of variation in yield-related traits, and have likely been impacted by breeding for increased productivity. Our study highlights the importance of genomic variants affecting homoeolog expression dosage in shaping agronomic phenotypes and points at their potential utility for improving yield in polyploid crops.


Assuntos
Regulação da Expressão Gênica de Plantas , Expressão Gênica , Genômica , Fenótipo , Poliploidia , Triticum/genética , Alelos , Mapeamento Cromossômico , Genoma de Planta , Melhoramento Vegetal , Locos de Características Quantitativas , Triticum/fisiologia
3.
Biology (Basel) ; 10(9)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34571732

RESUMO

Grain yield (YLD) is a function of the total biomass (BM) and of partitioning the biomass by grains, i.e., the harvest index (HI). The most critical developmental stage for their determination is the flowering time, which mainly depends on the vernalization requirement (Vrn) and photoperiod sensitivity genes (Ppd) loci. Allelic variants at the Vrn, Ppd, and earliness per se (Eps) genes of elite spring wheat genotypes included in High Biomass Association Panel (HiBAP) I and II were used to estimate their effects on the phenological stages BM, HI, and YLD. Each panel was grown for two consecutive years in Northwest Mexico. Spring alleles at Vrn-1 had the largest effect on shortening the time to anthesis, and the Ppd-insensitive allele Ppd-D1a had the most significant positive effect on YLD in both panels. In addition, alleles at TaTOE-B1 and TaFT3-B1 promoted between 3.8% and 7.6% higher YLD and 4.2% and 10.2% higher HI in HiBAP I and II, respectively. When the possible effects of the TaTOE-B1 and TaFT3-B1 alleles on the sink and source traits were explored, the favorable allele at TaTOE-B1 showed positive effects on several sink traits mainly related to grain number. The favorable alleles at TaFT3-B1 followed a different pattern, with positive effects on the traits related to grain weight. The results of this study expanded the wheat breeders' toolbox in the quest to breed better-adapted and higher-yielding wheat cultivars.

4.
J Exp Bot ; 72(20): 7203-7218, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34245278

RESUMO

To maximize the grain yield of spring wheat, flowering needs to coincide with the optimal flowering period (OFP) by minimizing frost and heat stress on reproductive development. This global study conducted a comprehensive modelling analysis of genotype, environment, and management to identify the OFPs for sites in irrigated mega-environments of spring wheat where the crop matures during a period of increasing temperatures. We used a gene-based phenology model to conduct long-term simulation analysis with parameterized genotypes to identify OFPs and optimal sowing dates for sites in irrigated mega-environments, considering the impacts of frost and heat stress on yield. The validation results showed that the gene-based model accurately predicted wheat heading dates across global wheat environments. The long-term simulations indicated that frost and heat stress significantly advanced or delayed OFPs and shrank the durations of OFPs in irrigated mega-environments when compared with OFPs where the model excluded frost and heat stress impacts. The simulation results (incorporating frost and heat penalties on yield) also showed that earlier flowering generally resulted in higher yields, and early sowing dates and/or early flowering genotypes were suggested to achieve early flowering. These results provided an interpretation of the regulation of wheat flowering to the OFP by the selection of sowing date and cultivar to achieve higher yields in irrigated mega-environments.


Assuntos
Grão Comestível , Triticum , Simulação por Computador , Estações do Ano , Temperatura , Triticum/genética
5.
J Exp Bot ; 72(14): 5134-5157, 2021 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-34139769

RESUMO

Despite being the world's most widely grown crop, research investments in wheat (Triticum aestivum and Triticum durum) fall behind those in other staple crops. Current yield gains will not meet 2050 needs, and climate stresses compound this challenge. However, there is good evidence that heat and drought resilience can be boosted through translating promising ideas into novel breeding technologies using powerful new tools in genetics and remote sensing, for example. Such technologies can also be applied to identify climate resilience traits from among the vast and largely untapped reserve of wheat genetic resources in collections worldwide. This review describes multi-pronged research opportunities at the focus of the Heat and Drought Wheat Improvement Consortium (coordinated by CIMMYT), which together create a pipeline to boost heat and drought resilience, specifically: improving crop design targets using big data approaches; developing phenomic tools for field-based screening and research; applying genomic technologies to elucidate the bases of climate resilience traits; and applying these outputs in developing next-generation breeding methods. The global impact of these outputs will be validated through the International Wheat Improvement Network, a global germplasm development and testing system that contributes key productivity traits to approximately half of the global wheat-growing area.


Assuntos
Melhoramento Vegetal , Triticum , Clima , Secas , Pesquisa Translacional Biomédica , Triticum/genética
6.
Mol Plant ; 14(6): 874-887, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33713844

RESUMO

Identifying mechanisms and pathways involved in gene-environment interplay and phenotypic plasticity is a long-standing challenge. It is highly desirable to establish an integrated framework with an environmental dimension for complex trait dissection and prediction. A critical step is to identify an environmental index that is both biologically relevant and estimable for new environments. With extensive field-observed complex traits, environmental profiles, and genome-wide single nucleotide polymorphisms for three major crops (maize, wheat, and oat), we demonstrated that identifying such an environmental index (i.e., a combination of environmental parameter and growth window) enables genome-wide association studies and genomic selection of complex traits to be conducted with an explicit environmental dimension. Interestingly, genes identified for two reaction-norm parameters (i.e., intercept and slope) derived from flowering time values along the environmental index were less colocalized for a diverse maize panel than for wheat and oat breeding panels, agreeing with the different diversity levels and genetic constitutions of the panels. In addition, we showcased the usefulness of this framework for systematically forecasting the performance of diverse germplasm panels in new environments. This general framework and the companion CERIS-JGRA analytical package should facilitate biologically informed dissection of complex traits, enhanced performance prediction in breeding for future climates, and coordinated efforts to enrich our understanding of mechanisms underlying phenotypic variation.


Assuntos
Avena/genética , Interação Gene-Ambiente , Triticum/genética , Zea mays/genética , Avena/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Estudo de Associação Genômica Ampla , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Triticum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
7.
Curr Genomics ; 22(6): 440-449, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35340360

RESUMO

Developing climate-resilient wheat is a priority for South Asia since the effect of climate change will be pronounced on the major crops that are staple to the region. South Asia must produce >400 million metric tons (MMT) of wheat by 2050 to meet the demand. However, the current average yield <3 t/ha is not sufficient to meet the requirement. In this review, we are addressing how pre-breeding methods in wheat can address the gap in grain yield as well as reduce the bottleneck of genetic diversity. Physiological pre-breeding which incorporates screening of diverse germplasm from gene banks for physiological and agronomic traits, the strategic crossing of complementary traits, high throughput phenotyping, molecular markers-based generation advancement, genomic prediction, and validation of high-value heat and drought tolerant lines to South Asia can help to alleviate the drastic effect of climate change on wheat production. There are several gene banks, if utilized well, can play a major role in breeding for climate-resilient wheat. CIMMYT's wheat physiological pre-breeding has delivered several hundred lines via the Stress Adapted Trait Yield Nursery (SATYN) to the NARS in many South Asian countries; India, Pakistan, Nepal, Bangladesh, Afghanistan, and Iran. Some of these improved germplasms have resulted in varieties for farmer's field. We conclude the review by pointing out the importance of collaborative interdisciplinary translational research to alleviate the effects of climate change on wheat production in South Asia.

8.
Plant Dis ; 105(4): 997-1005, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33200970

RESUMO

Wheat sharp eyespot, a disease mainly caused by soilborne fungus Rhizoctonia cerealis, is a threat to world wheat production. Wheat's genetic resistance to sharp eyespot is a potential approach to reducing the application of fungicides and farming practice inputs. To identify the genetic basis of sharp eyespot resistance in Niavt14, a recombinant inbred line population comprising 215 F8 lines from Niavt14 × Xuzhou25, was developed. An earlier linkage map (148 simple sequence repeat markers) was updated with 5,792 polymorphic Affymetrix Axiom 55K single-nucleotide polymorphisms to a new map of 5,684.2 centimorgans with 1,406 nonredundant markers. The new linkage map covered all 21 chromosomes of common wheat and showed a good collinearity with the IWGSC RefSeq v1.0 genome. We conducted quantitative trait locus (QTL) mapping for sharp eyespot resistance using the adult plant response data from the field of five consecutive growing seasons and one greenhouse test. Two stable QTL on chromosomes 2B and 7D that were identified in the previous study were confirmed, and three novel, stable QTL, explaining 4.0 to 17.5% phenotypic variation, were mapped on 1D, 6D, and 7A, which were independent of QTL for phenology and plant height. The QTL on 1D, 2B, 6D, and 7A showed low frequencies in 384 landraces (0 to 10%) and 269 elite cultivars (5 to 23%) from the southern winter wheat region and the Yellow and Huai River Valley facultative wheat region in China, respectively. These identified QTL could be used in wheat breeding programs for improving sharp eyespot resistance through marker-assisted selection.


Assuntos
Resistência à Doença , Triticum , Basidiomycota , China , Resistência à Doença/genética , Dissecação , Humanos , Melhoramento Vegetal , Doenças das Plantas/genética , Estações do Ano , Triticum/genética
9.
Plant Sci ; 295: 110396, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32534615

RESUMO

The word phenotyping can nowadays invoke visions of a drone or phenocart moving swiftly across research plots collecting high-resolution data sets on a wide array of traits. This has been made possible by recent advances in sensor technology and data processing. Nonetheless, more comprehensive often destructive phenotyping still has much to offer in breeding as well as research. This review considers the 'breeder friendliness' of phenotyping within three main domains: (i) the 'minimum data set', where being 'handy' or accessible and easy to collect and use is paramount, visual assessment often being preferred; (ii) the high throughput phenotyping (HTP), relatively new for most breeders, and requiring significantly greater investment with technical hurdles for implementation and a steeper learning curve than the minimum data set; (iii) detailed characterization or 'precision' phenotyping, typically customized for a set of traits associated with a target environment and requiring significant time and resources. While having been the subject of debate in the past, extra investment for phenotyping is becoming more accepted to capitalize on recent developments in crop genomics and prediction models, that can be built from the high-throughput and detailed precision phenotypes. This review considers different contexts for phenotyping, including breeding, exploration of genetic resources, parent building and translational research to deliver other new breeding resources, and how the different categories of phenotyping listed above apply to each. Some of the same tools and rules of thumb apply equally well to phenotyping for genetic analysis of complex traits and gene discovery.


Assuntos
Produtos Agrícolas/genética , Fenótipo , Melhoramento Vegetal/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Genômica , Melhoramento Vegetal/estatística & dados numéricos
10.
Plant Genome ; 11(2)2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30025014

RESUMO

Genomic prediction studies incorporating genotype × environment (G×E) interaction effects are limited in durum wheat. We tested the genomic-enabled prediction accuracy (PA) of Genomic Best Linear Unbiased Predictor (GBLUP) models-six non-G × E and three G × E models-on three basic cross-validation (CV) schemes- in predicting incomplete field trials (CV2), new lines (CV1), and lines in untested environments (CV0)- in a durum wheat panel grown under yield potential, drought stress, and heat stress conditions. For CV0, three scenarios were considered: (i) leave-one environment out (CV0-Env); (ii) leave one site out (CV0-Site); and (iii) leave 1 yr out (CV0-Year). The reaction norm models with G × E effects showed higher PA than the non-G × E models. Among the CV schemes, CV2 and CV0-Env had higher PA (0.58 each) than the CV1 scheme (0.35). When the average of all the models and CV schemes were considered, among the eight traits- grain yield, thousand grain weight, grain number, days to anthesis, days to maturity, plant height, and normalized difference vegetation index at vegetative (NDVIvg) and grain filling (NDVIllg)-, plant height had the highest PA (0.68) and moderate values were observed for grain yield (0.34). The results indicated that genomic selection models incorporating G × E interaction show great promise for forward prediction and application in durum wheat breeding to increase genetic gains.


Assuntos
Interação Gene-Ambiente , Genômica/métodos , Modelos Genéticos , Triticum/fisiologia , Secas , Resposta ao Choque Térmico/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Triticum/genética
11.
Front Plant Sci ; 9: 81, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29467776

RESUMO

Understanding the genetic bases of economically important traits is fundamentally important in enhancing genetic gains in durum wheat. In this study, a durum panel of 208 lines (comprised of elite materials and exotics from the International Maize and Wheat Improvement Center gene bank) were subjected to genome wide association study (GWAS) using 6,211 DArTseq single nucleotide polymorphisms (SNPs). The panel was phenotyped under yield potential (YP), drought stress (DT), and heat stress (HT) conditions for 2 years. Mean yield of the panel was reduced by 72% (to 1.64 t/ha) under HT and by 60% (to 2.33 t/ha) under DT, compared to YP (5.79 t/ha). Whereas, the mean yield of the panel under HT was 30% less than under DT. GWAS identified the largest number of significant marker-trait associations on chromosomes 2A and 2B with p-values 10-06 to 10-03 and the markers from the whole study explained 7-25% variation in the traits. Common markers were identified for stress tolerance indices: stress susceptibility index, stress tolerance, and stress tolerance index estimated for the traits under DT (82 cM on 2B) and HT (68 and 83 cM on 3B; 25 cM on 7A). GWAS of irrigated (YP and HT combined), stressed (DT and HT combined), combined analysis of three environments (YP + DT + HT), and its comparison with trait per se and stress indices identified QTL hotspots on chromosomes 2A (54-70 cM) and 2B (75-82 cM). This study enhances our knowledge about the molecular markers associated with grain yield and its components under different stress conditions. It identifies several marker-trait associations for further exploration and validation for marker-assisted breeding.

12.
Theor Appl Genet ; 131(4): 999, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29453525

RESUMO

Unfortunately, the Fig. 1 of this original article was incorrectly published. The corrected Fig. 1 is given below.

14.
Theor Appl Genet ; 131(4): 985-998, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29218375

RESUMO

KEY MESSAGE: GWAS on multi-environment data identified genomic regions associated with trade-offs for grain weight and grain number. Grain yield (GY) can be dissected into its components thousand grain weight (TGW) and grain number (GN), but little has been achieved in assessing the trade-off between them in spring wheat. In the present study, the Wheat Association Mapping Initiative (WAMI) panel of 287 elite spring bread wheat lines was phenotyped for GY, GN, and TGW in ten environments across different wheat growing regions in Mexico, South Asia, and North Africa. The panel genotyped with the 90 K Illumina Infinitum SNP array resulted in 26,814 SNPs for genome-wide association study (GWAS). Statistical analysis of the multi-environmental data for GY, GN, and TGW observed repeatability estimates of 0.76, 0.62, and 0.95, respectively. GWAS on BLUPs of combined environment analysis identified 38 loci associated with the traits. Among them four loci-6A (85 cM), 5A (98 cM), 3B (99 cM), and 2B (96 cM)-were associated with multiple traits. The study identified two loci that showed positive association between GY and TGW, with allelic substitution effects of 4% (GY) and 1.7% (TGW) for 6A locus and 0.2% (GY) and 7.2% (TGW) for 2B locus. The locus in chromosome 6A (79-85 cM) harbored a gene TaGW2-6A. We also identified that a combination of markers associated with GY, TGW, and GN together explained higher variation for GY (32%), than the markers associated with GY alone (27%). The marker-trait associations from the present study can be used for marker-assisted selection (MAS) and to discover the underlying genes for these traits in spring wheat.


Assuntos
Meio Ambiente , Genética Populacional , Genoma de Planta , Sementes/crescimento & desenvolvimento , Triticum/genética , Alelos , Mapeamento Cromossômico , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Modelos Estatísticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Triticum/crescimento & desenvolvimento
15.
G3 (Bethesda) ; 7(2): 481-495, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-27903632

RESUMO

Developing genomic selection (GS) models is an important step in applying GS to accelerate the rate of genetic gain in grain yield in plant breeding. In this study, seven genomic prediction models under two cross-validation (CV) scenarios were tested on 287 advanced elite spring wheat lines phenotyped for grain yield (GY), thousand-grain weight (GW), grain number (GN), and thermal time for flowering (TTF) in 18 international environments (year-location combinations) in major wheat-producing countries in 2010 and 2011. Prediction models with genomic and pedigree information included main effects and interaction with environments. Two random CV schemes were applied to predict a subset of lines that were not observed in any of the 18 environments (CV1), and a subset of lines that were not observed in a set of the environments, but were observed in other environments (CV2). Genomic prediction models, including genotype × environment (G×E) interaction, had the highest average prediction ability under the CV1 scenario for GY (0.31), GN (0.32), GW (0.45), and TTF (0.27). For CV2, the average prediction ability of the model including the interaction terms was generally high for GY (0.38), GN (0.43), GW (0.63), and TTF (0.53). Wheat lines in site-year combinations in Mexico and India had relatively high prediction ability for GY and GW. Results indicated that prediction ability of lines not observed in certain environments could be relatively high for genomic selection when predicting G×E interaction in multi-environment trials.


Assuntos
Interação Gene-Ambiente , Genômica , Seleção Genética , Triticum/genética , África do Norte , Ásia , Cruzamento , Genoma de Planta , Genótipo , México , Linhagem , Fenótipo , Característica Quantitativa Herdável , Estações do Ano , Triticum/crescimento & desenvolvimento
16.
New Phytol ; 214(1): 271-283, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27918628

RESUMO

The gaseous phytohormone ethylene plays an important role in spike development in wheat (Triticum aestivum). However, the genotypic variation and the genomic regions governing spike ethylene (SET) production in wheat under long-term heat stress remain unexplored. We investigated genotypic variation in the production of SET and its relationship with spike dry weight (SDW) in 130 diverse wheat elite lines and landraces under heat-stressed field conditions. We employed an Illumina iSelect 90K single nucleotide polymorphism (SNP) genotyping array to identify the genetic loci for SET and SDW through a genome-wide association study (GWAS) in a subset of the Wheat Association Mapping Initiative (WAMI) panel. The SET and SDW exhibited appreciable genotypic variation among wheat genotypes at the anthesis stage. There was a strong negative correlation between SET and SDW. The GWAS uncovered five and 32 significant SNPs for SET, and 22 and 142 significant SNPs for SDW, in glasshouse and field conditions, respectively. Some of these SNPs closely localized to the SNPs for plant height, suggesting close associations between plant height and spike-related traits. The phenotypic and genetic elucidation of SET and its relationship with SDW supports future efforts toward gene discovery and breeding wheat cultivars with reduced ethylene effects on yield under heat stress.


Assuntos
Etilenos/metabolismo , Estudo de Associação Genômica Ampla , Resposta ao Choque Térmico/genética , Triticum/genética , Triticum/fisiologia , Biomassa , Genótipo , Fenótipo , Triticum/anatomia & histologia
17.
Theor Appl Genet ; 128(2): 353-63, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25490985

RESUMO

KEY MESSAGE: Through genome-wide association study, loci for grain yield and yield components were identified in chromosomes 5A and 6A in spring wheat (Triticum aestivum). Genome-wide association study (GWAS) was conducted for grain yield (YLD) and yield components on a wheat association mapping initiative (WAMI) population of 287 elite, spring wheat lines grown under temperate irrigated high-yield potential condition in Ciudad Obregón, Mexico, during four crop cycles (from 2009-2010 to 2012-2013). The population was genotyped with high-density Illumina iSelect 90K single nucleotide polymorphisms (SNPs) assay. An analysis of traits across subpopulations indicated that lines with 1B/1R translocation had higher YLD, grain weight, and taller plants than lines without the translocation. GWAS using 18,704 SNPs identified 31 loci that explained 5-14 % of the variation in individual traits. We identified SNPs in chromosome 5A and 6A that were significantly associated with yield and yield components. Four loci were detected for YLD in chromosomes 3B, 5A, 5B, and 6A and the locus in 5A explained 5 % of the variation for grain number/m(2). The locus for YLD in chromosome 6A also explained 6 % of the variation in grain weight. Loci significantly associated with maturity were identified in chromosomes 2B, 3B, 4B, 4D, and 6A and for plant height in 1A and 6A. Loci were also detected for canopy temperature at grain filling (2D, 4D, 6A), chlorophyll index at grain filling (3B and 6A), biomass (3D and 6A) and harvest index (1D, 1B, and 3B) that explained 5-10 % variation. These markers will be further validated.


Assuntos
Característica Quantitativa Herdável , Triticum/crescimento & desenvolvimento , Triticum/genética , Mapeamento Cromossômico , DNA de Plantas/genética , Estudos de Associação Genética , Marcadores Genéticos , Genótipo , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único , Sementes/crescimento & desenvolvimento
18.
Theor Appl Genet ; 123(8): 1307-17, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21822942

RESUMO

Peanut (Arachis hypogaea L.) is one of the most important oilseed and nutritional crops in the world. To efficiently utilize the germplasm collection, a peanut mini-core containing 112 accessions was established in the United States. To determine the population structure and its impact on marker-trait association, this mini-core collection was assessed by genotyping 94 accessions with 81 SSR markers and two functional SNP markers from fatty acid desaturase 2 (FAD2). Seed quality traits (including oil content, fatty acid composition, flavonoids, and resveratrol) were obtained through nuclear magnetic resonance (NMR), gas chromatography (GC), and high-performance liquid chromatography (HPLC) analysis. Genetic diversity and population structure analysis identified four major subpopulations that are related to four botanical varieties. Model comparison with different levels of population structure and kinship control was conducted for each trait and association analyses with the selected models verified that the functional SNP from the FAD2A gene is significantly associated with oleic acid (C18:1), linoleic acid (C18:2), and oleic-to-linoleic (O/L) ratio across this diverse collection. Even though the allele distribution of FAD2A was structured among the four subpopulations, the effect of FAD2A gene remained significant after controlling population structure and had a likelihood-ratio-based R ( 2 ) (R ( LR ) ( 2 ) ) value of 0.05 (oleic acid), 0.09 (linoleic acid), and 0.07 (O/L ratio) because the FAD2A alleles were not completely fixed within subpopulations. Our genetic analysis demonstrated that this peanut mini-core panel is suitable for association mapping. Phenotypic characterization for seed quality traits and association testing of the functional SNP from FAD2A gene provided information for further breeding and genetic research.


Assuntos
Arachis/genética , Estudos de Associação Genética , Característica Quantitativa Herdável , Sementes/genética , Arachis/enzimologia , Ácidos Graxos Dessaturases/genética , Marcadores Genéticos , Variação Genética , Genética Populacional , Genótipo , Geografia , Repetições de Microssatélites/genética , Modelos Genéticos , Polimorfismo de Nucleotídeo Único/genética , Dinâmica Populacional , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA