Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Tipo de estudo
Intervalo de ano de publicação
1.
Front Neurol ; 13: 827780, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356449

RESUMO

Objective: Children, adolescents, and young adults with congenital heart defects (CHD) often display executive dysfunction. We consider the prefrontal and cerebellar brain structures as mechanisms for executive dysfunction among those with CHD. Methods: 55 participants with CHD (M age = 13.93) and 95 healthy controls (M age = 13.13) completed magnetic resonance imaging (MRI) of the brain, from which we extracted volumetric data on prefrontal and cerebellar regions. Participants also completed neuropsychological tests of executive functioning; their parents completed ratings of their executive functions. Results: Compared to healthy controls, those with CHD had smaller cerebellums and lateral, medial, and orbital prefrontal regions, they performed more poorly on tests of working memory, inhibitory control, and mental flexibility, and their parents rated them as having poorer executive functions across several indices. Across both groups, there were significant correlations for cerebellar and/or prefrontal volumes with cognitive assessments of working memory, mental flexibility, and inhibitory control and with parent-completed ratings of task initiation, working memory, and planning/organization. Greater prefrontal volumes were associated with better working memory, among those with larger cerebellums (with group differences based on the measure and the prefrontal region). Greater prefrontal volumes were related to better emotional regulation only among participants with CHD with smaller cerebellar volumes, and with poorer inhibition and emotional regulation only among healthy controls with larger cerebellar volumes. Conclusion: The cerebellum not only contributes to executive functioning among young individuals with CHD but may also modulate the relationships between prefrontal regions and executive functioning differently for pediatric patients with CHD vs. health controls.

2.
Sensors (Basel) ; 21(14)2021 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-34300624

RESUMO

Adults are constantly exposed to stressful conditions at their workplace, and this can lead to decreased job performance followed by detrimental clinical health problems. Advancement of sensor technologies has allowed the electroencephalography (EEG) devices to be portable and used in real-time to monitor mental health. However, real-time monitoring is not often practical in workplace environments with complex operations such as kindergarten, firefighting and offshore facilities. Integrating the EEG with virtual reality (VR) that emulates workplace conditions can be a tool to assess and monitor mental health of adults within their working environment. This paper evaluates the mental states induced when performing a stressful task in a VR-based offshore environment. The theta, alpha and beta frequency bands are analysed to assess changes in mental states due to physical discomfort, stress and concentration. During the VR trials, mental states of discomfort and disorientation are observed with the drop of theta activity, whilst the stress induced from the conditional tasks is reflected in the changes of low-alpha and high-beta activities. The deflection of frontal alpha asymmetry from negative to positive direction reflects the learning effects from emotion-focus to problem-solving strategies adopted to accomplish the VR task. This study highlights the need for an integrated VR-EEG system in workplace settings as a tool to monitor and assess mental health of working adults.


Assuntos
Realidade Virtual , Eletroencefalografia , Interface Usuário-Computador , Local de Trabalho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA