Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Biol Int ; 45(11): 2238-2250, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34288224

RESUMO

Even though rats are popular model animals, the ultrastructure of their pluripotent cells, that is, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), remains unexplored, although fine structure of pluripotent stem cells of mice and humans and its changes during differentiation have been investigated well. In the present study, we carried out ultrastructural and morphometric analyses of three lines of rat ESCs and two lines of rat iPSCs. The rat pluripotent stem cells were found to have the main typical morphological features of pluripotent cells: large nuclei of irregular or nearly round shape, scanty cytoplasm with few membrane organelles, and a poorly developed Golgi apparatus and endoplasmic reticulum. The cytoplasm of the rat pluripotent cells contains clusters of glycogen, previously described in human ESCs. To identify possible differences between rat ESCs and iPSCs, we performed a morphometric analysis of cell parameters. The mean area of cells and nuclei, the nuclear/cytoplasmic ratio, distributions of glycogen and diversity of mitochondria showed marked variations among the lines of rat pluripotent stem cells and were more pronounced than variations between rat ESCs and iPSCs as separate types of pluripotent stem cells. We noted morphological heterogeneity of the mitochondrial population in the rat pluripotent stem cells. The cells contained three types of mitochondria differing in the structure of cristae and in matrix density, and our morphometric analysis revealed differences in cristae structure.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Mitocôndrias/metabolismo , Animais , Diferenciação Celular/fisiologia , Núcleo Celular/patologia , Células-Tronco Embrionárias/ultraestrutura , Células-Tronco Pluripotentes Induzidas/ultraestrutura , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Membranas Mitocondriais/metabolismo , Células-Tronco Pluripotentes/citologia , Ratos
2.
J Pers Med ; 10(4)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182269

RESUMO

Huntington's disease (HD) is a severe neurodegenerative disorder caused by a CAG triplet expansion in the first exon of the HTT gene. Here we report the introduction of an HD mutation into the genome of healthy human embryonic fibroblasts through CRISPR/Cas9-mediated homologous recombination. We verified the specificity of the created HTT-editing system and confirmed the absence of undesirable genomic modifications at off-target sites. We showed that both mutant and control isogenic induced pluripotent stem cells (iPSCs) derived by reprogramming of the fibroblast clones can be differentiated into striatal medium spiny neurons. We next demonstrated phenotypic abnormalities in the mutant iPSC-derived neural cells, including impaired neural rosette formation and increased sensitivity to growth factor withdrawal. Moreover, using electron microscopic analysis, we detected a series of ultrastructural defects in the mutant neurons, which did not contain huntingtin aggregates, suggesting that these defects appear early in HD development. Thus, our study describes creation of a new isogenic iPSC-based cell system that models HD and recapitulates HD-specific disturbances in the mutant cells, including some ultrastructural features implemented for the first time.

3.
Cytotechnology ; 72(5): 649-663, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32519278

RESUMO

Cell models are promising tools for studying hereditary human neurodegenerative diseases. Neuronal derivatives of pluripotent stem cells provide the opportunity to investigate different stages of the neurodegeneration process. Therefore, easy and large-scale production of relevant cell types is a crucial barrier to overcome. In this work, we present an alternative protocol for iPSC differentiation into GABAergic medium spiny neurons (MSNs). The first stage involved dual-SMAD signalling inhibition through treatment with SB431542 and LDN193189, which results in the generation of neuroectodermal cells. Moreover, we used bFGF as a neuronal survival factor and dorsomorphin to inhibit BMP signalling. The combined treatment of dorsomorphin and SB431542 significantly enhanced neuronal induction, which was confirmed by the increased expression of the telencephalic-specific markers SOX1 and OTX2 as well as the forebrain marker PAX6. The next stage involved the derivation of actively proliferating MSN progenitor cells. An important feature of our protocol at this stage is the ability to perform prolonged cultivation of precursor cells at a high density without losing phenotypic properties. Moreover, the protocol enables multiple expansion steps (> 180 days cultivation) and cryopreservation of MSN progenitors. Therefore, this method allows quick production of a large number of neurons that are relevant for basic research, large-scale drug screening, and toxicological studies.

4.
PLoS One ; 13(10): e0204735, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30332437

RESUMO

Modeling of neurodegenerative diseases in vitro holds great promise for biomedical research. Human cell lines harboring a mutations in disease-causing genes are thought to recapitulate early stages of the development an inherited disease. Modern genome-editing tools allow researchers to create isogenic cell clones with an identical genetic background providing an adequate "healthy" control for biomedical and pharmacological experiments. Here, we generated isogenic mutant cell clones with 150 CAG repeats in the first exon of the huntingtin (HTT) gene using the CRISPR/Cas9 system and performed ultrastructural and morphometric analyses of the internal organization of the mutant cells. Electron microscopy showed that deletion of three CAG triplets or an HTT gene knockout had no significant influence on the cell structure. The insertion of 150 CAG repeats led to substantial changes in quantitative and morphological parameters of mitochondria and increased the association of mitochondria with the smooth and rough endoplasmic reticulum while causing accumulation of small autolysosomes in the cytoplasm. Our data indicate for the first time that expansion of the CAG repeat tract in HTT introduced via the CRISPR/Cas9 technology into a human cell line initiates numerous ultrastructural defects that are typical for Huntington's disease.


Assuntos
Proteína Huntingtina/genética , Doença de Huntington/genética , Doença de Huntington/patologia , Proteínas Mutantes/genética , Expansão das Repetições de Trinucleotídeos , Sistemas CRISPR-Cas , Células Clonais/metabolismo , Células Clonais/ultraestrutura , Retículo Endoplasmático/ultraestrutura , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Proteína Huntingtina/antagonistas & inibidores , Lisossomos/ultraestrutura , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Mutação
5.
Protoplasma ; 255(5): 1373-1386, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29549502

RESUMO

Mouse embryonic stem (ES) cells are widely used in developmental biology and transgenic research. Despite numerous studies, ultrastructural reorganization of inner cell mass (ICM) cells during in vitro culture has not yet been described in detail. Here, we for the first time performed comparative morphological and morphometric analyses of three ES cell lines during their derivation in vitro. We compared morphological characteristics of blastocyst ICM cells at 3.5 and 4.5 days post coitum on feeder cells (day 6, passage 0) with those of ES cells at different passages (day 19, passage 2; day 25, passage 4; and passage 15). At passage 0, there were 23-36% of ES-like cells with various values of the medium cross-sectional area and nucleocytoplasmic parameters, 55% of fibroblast-like (probably trophoblast derivatives), and ~ 19% of dying cells. ES-like cells at passage 0 contained autolysosomes and enlarged mitochondria with reduced numerical density per cell. There were three types of mitochondria that differed in matrix density and cristae width. For the first time, we revealed cells that had two and sometimes three morphologically distinct mitochondria types in the cytoplasm. At passage 2, there were mostly ES cells with a high nucleocytoplasmic ratio and a cytoplasm depleted of organelles. At passage 4, ES cell morphology and morphometric parameters were mostly stable with little heterogeneity. According to our data, cellular structures of ICM cells undergo destabilization during derivation of an ES cell line with subsequent reorganization into the structures typical for ES cells. On the basis of ultrastructural analysis of mitochondria, we believe that the functional activity of these organelles changes during early stages of ES cell formation from the ICM.


Assuntos
Mitocôndrias/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Animais , Linhagem Celular , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Camundongos , Mitocôndrias/ultraestrutura , Células-Tronco Embrionárias Murinas/ultraestrutura , Organelas/metabolismo , Organelas/ultraestrutura
6.
Mol Neurodegener ; 11: 27, 2016 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-27080129

RESUMO

BACKGROUND: Huntington's disease (HD) is an incurable hereditary neurodegenerative disorder, which manifests itself as a loss of GABAergic medium spiny (GABA MS) neurons in the striatum and caused by an expansion of the CAG repeat in exon 1 of the huntingtin gene. There is no cure for HD, existing pharmaceutical can only relieve its symptoms. RESULTS: Here, induced pluripotent stem cells were established from patients with low CAG repeat expansion in the huntingtin gene, and were then efficiently differentiated into GABA MS-like neurons (GMSLNs) under defined culture conditions. The generated HD GMSLNs recapitulated disease pathology in vitro, as evidenced by mutant huntingtin protein aggregation, increased number of lysosomes/autophagosomes, nuclear indentations, and enhanced neuronal death during cell aging. Moreover, store-operated channel (SOC) currents were detected in the differentiated neurons, and enhanced calcium entry was reproducibly demonstrated in all HD GMSLNs genotypes. Additionally, the quinazoline derivative, EVP4593, reduced the number of lysosomes/autophagosomes and SOC currents in HD GMSLNs and exerted neuroprotective effects during cell aging. CONCLUSIONS: Our data is the first to demonstrate the direct link of nuclear morphology and SOC calcium deregulation to mutant huntingtin protein expression in iPSCs-derived neurons with disease-mimetic hallmarks, providing a valuable tool for identification of candidate anti-HD drugs. Our experiments demonstrated that EVP4593 may be a promising anti-HD drug.


Assuntos
Doença de Huntington/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Cálcio/metabolismo , Diferenciação Celular , Linhagem Celular , Corpo Estriado/metabolismo , Humanos , Doença de Huntington/metabolismo , Lisossomos/metabolismo , Proteínas Mutantes/metabolismo , Proteínas Nucleares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA