Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Psychiatry Res ; 337: 115967, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796933

RESUMO

The role of the endocannabinoid system (ECS) in depression and suicidality has recently emerged. The purpose of the study was to identify changes in plasma endocannabinoid concentrations of several endocannabinoids and correlate them with depressive symptoms and suicidality in patients with severe major depression undergoing electroconvulsive therapy (ECT). The study included 17 patients that were evaluated in four visits at different stages of therapy. At each visit depression, anxiety and suicidality symptoms were assessed and blood samples collected. Several endocannabinoid concentrations increased following six sessions of ECT, as 2-AG (p < 0.05) and LEA (p < 0.01), and following twelve sessions of ECT, as 2-AG (p < 0.05), AEA (p < 0.05), LEA (p < 0.05) and DH-Gly (p < 0.05). Endocannabinoids also correlated with symptoms of depression, anxiety and suicidality at baseline and at the sixth ECT session. Finally, we found one endocannabinoid, l-Gly, that differentiated between remitted and not-remitted patients at the seventh and thirteenth ECT sessions (p < 0.05). Our findings suggest that depression is markedly related to imbalance of the endocannabinoid system, and further regulated by ECT. Plasma endocannabinoids could be promising biomarkers for detection of depression response and remission.


Assuntos
Transtorno Depressivo Maior , Eletroconvulsoterapia , Endocanabinoides , Humanos , Endocanabinoides/sangue , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/terapia , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Ácidos Araquidônicos/sangue , Idoso , Alcamidas Poli-Insaturadas/sangue , Glicerídeos/sangue , Ácidos Oleicos/sangue , Escalas de Graduação Psiquiátrica , Ideação Suicida
2.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256146

RESUMO

The prevalence of obesity and obesity-related pathologies is lower in frequent cannabis users compared to non-users. It is well established that the endocannabinoid system has an important role in the development of obesity. We recently demonstrated that prolonged oral consumption of purified Δ-9 Tetrahydrocannabinol (THC), but not of cannabidiol (CBD), ameliorates diet-induced obesity and improves obesity-related metabolic complications in a high-fat diet mouse model. However, the effect of commercially available medical cannabis oils that contain numerous additional active molecules has not been examined. We tested herein the effects of THC- and CBD-enriched medical cannabis oils on obesity parameters and the gut microbiota composition of C57BL/6 male mice fed with either a high-fat or standard diet. We also assessed the levels of prominent endocannabinoids and endocannabinoid-like lipid mediators in the liver. THC-enriched extract prevented weight gain by a high-fat diet and attenuated diet-induced liver steatosis concomitantly with reduced levels of the lipid mediators palmitoyl ethanolamide (PEA) and docosahexaenoyl ethanolamide (DHEA) in the liver. In contrast, CBD-enriched extract had no effect on weight gain, but, on the contrary, it even exacerbated liver steatosis. An analysis of the gut microbiota revealed that mainly time but not treatment exerted a strong effect on gut microbiota alterations. From our data, we conclude that THC-enriched cannabis oil where THC is the main constituent exerts the optimal anti-obesity effects.


Assuntos
Canabidiol , Cannabis , Fígado Gorduroso , Alucinógenos , Maconha Medicinal , Microbiota , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica/efeitos adversos , Endocanabinoides , Agonistas de Receptores de Canabinoides , Canabidiol/farmacologia , Obesidade/tratamento farmacológico , Obesidade/etiologia , Aumento de Peso , Óleos , Extratos Vegetais/farmacologia
3.
Alzheimers Res Ther ; 15(1): 154, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700370

RESUMO

BACKGROUND: Preclinical studies highlight the importance of endogenous cannabinoids (endocannabinoids; eCBs) in neurodegeneration. Yet, prior observational studies focused on limited outcome measures and assessed only few eCB compounds while largely ignoring the complexity of the eCB system. We examined the associations of multiple circulating eCBs and eCB-like molecules with early markers of neurodegeneration and neuro-injury and tested for effect modification by sex. METHODS: This exploratory cross-sectional study included a random sample of 237 dementia-free older participants from the Framingham Heart Study Offspring cohort who attended examination cycle 9 (2011-2014), were 65 years or older, and cognitively healthy. Forty-four eCB compounds were quantified in serum, via liquid chromatography high-resolution mass spectrometry. Linear regression models were used to examine the associations of eCB levels with brain MRI measures (i.e., total cerebral brain volume, gray matter volume, hippocampal volume, and white matter hyperintensities volume) and blood biomarkers of Alzheimer's disease and neuro-injury (i.e., total tau, neurofilament light, glial fibrillary acidic protein and Ubiquitin C-terminal hydrolase L1). All models were adjusted for potential confounders and effect modification by sex was examined. RESULTS: Participants mean age was 73.3 ± 6.2 years, and 40% were men. After adjustment for potential confounders and correction for multiple comparisons, no statistically significant associations were observed between eCB levels and the study outcomes. However, we identified multiple sex-specific associations between eCB levels and the various study outcomes. For example, high linoleoyl ethanolamide (LEA) levels were related to decreased hippocampal volume among men and to increased hippocampal volume among women (ß ± SE = - 0.12 ± 0.06, p = 0.034 and ß ± SE = 0.08 ± 0.04, p = 0.026, respectively). CONCLUSIONS: Circulating eCBs may play a role in neuro-injury and may explain sex differences in susceptibility to accelerated brain aging. Particularly, our results highlight the possible involvement of eCBs from the N-acyl amino acids and fatty acid ethanolamide classes and suggest specific novel fatty acid compounds that may be implicated in brain aging. Furthermore, investigation of the eCBs contribution to neurodegenerative disease such as Alzheimer's disease in humans is warranted, especially with prospective study designs and among diverse populations, including premenopausal women.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Feminino , Masculino , Idoso , Endocanabinoides , Estudos Transversais , Estudos Prospectivos , Neuroimagem , Ácidos Graxos , Biomarcadores
4.
Int J Mol Sci ; 24(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37762099

RESUMO

Prolonged cannabis users show a lower prevalence of obesity and associated comorbidities. In rodent models, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) from the plant Cannabis sativa L. have shown anti-obesity properties, suggesting a link between the endocannabinoid system (ECS) and obesity. However, the oral administration route has rarely been studied in this context. The aim of this study was to investigate the effect of prolonged oral administration of pure THC and CBD on obesity-related parameters and peripheral endocannabinoids. C57BL/6 male mice were fed with either a high-fat or standard diet and then received oral treatment in ramping doses, namely 10 mg/kg of THC or CBD for 5 weeks followed by 30 mg/kg for an additional 5 weeks. Mice treated with THC had attenuated weight gain and improved glucose tolerance, followed by improvement in steatosis markers and decreased hypertrophic cells in adipose epididymal tissue. Mice treated with CBD had improved glucose tolerance and increased markers of lipid metabolism in adipose and liver tissues, but in contrast to THC, CBD had no effect on weight gain and steatosis markers. CBD exclusively decreased the level of the endocannabinoid 2-arachidonoylglycerol in the liver. These data suggest that the prolonged oral consumption of THC, but not of CBD, ameliorates diet-induced obesity and metabolic parameters, possibly through a mechanism of adipose tissue adaptation.


Assuntos
Canabidiol , Cannabis , Camundongos , Animais , Dronabinol/farmacologia , Canabidiol/farmacologia , Endocanabinoides , Camundongos Endogâmicos C57BL , Obesidade/tratamento farmacológico , Obesidade/etiologia , Aumento de Peso , Glucose
5.
Oncoimmunology ; 12(1): 2219164, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37325437

RESUMO

During solid tumor progression, the tumor microenvironment (TME) evolves into a highly immunosuppressive milieu. Key players in the immunosuppressive environment are regulatory myeloid cells, including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), which are recruited and activated via tumor-secreted cytokines such as colony-stimulating factor 1 (CSF-1). Therefore, the depletion of tumor-secreted cytokines is a leading anticancer strategy. Here, we found that CSF-1 secretion by melanoma cells is decreased following treatment with Cannabis extracts. Cannabigerol (CBG) was identified as the bioactive cannabinoid responsible for the effects. Conditioned media from cells treated with pure CBG or the high-CBG extract reduced the expansion and macrophage transition of the monocytic-MDSC subpopulation. Treated MO-MDSCs also expressed lower levels of iNOS, leading to restored CD8+ T-cell activation. Tumor-bearing mice treated with CBG presented reduced tumor progression, lower TAM frequencies and reduced TAM/M1 ratio. A combination of CBG and αPD-L1 was more effective in reducing tumor progression, enhancing survival and increasing the infiltration of activated cytotoxic T-cells than each treatment separately. We show a novel mechanism for CBG in modulating the TME and enhancing immune checkpoint blockade therapy, underlining its promising therapeutic potential for the treatment of a variety of tumors with elevated CSF-1 expression.


Assuntos
Fator Estimulador de Colônias de Macrófagos , Melanoma , Camundongos , Animais , Fator Estimulador de Colônias de Macrófagos/metabolismo , Células Mieloides/metabolismo , Melanoma/tratamento farmacológico , Citocinas/metabolismo , Microambiente Tumoral
6.
Drug Deliv Transl Res ; 13(12): 3192-3203, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37341881

RESUMO

Cannabidiol (CBD), a non-psychoactive constituent of Cannabis, has proven neuroprotective, anti-inflammatory and antioxidant properties though his therapeutic use, especially by the oral route, is still challenged by the poor aqueous solubility that results in low oral bioavailability. In this work, we investigate the encapsulation of CBD within nanoparticles of a highly hydrophobic poly(ethylene glycol)-b-poly(epsilon-caprolactone) block copolymer produced by a simple and reproducible nanoprecipitation method. The encapsulation efficiency is ~ 100% and the CBD loading 11% w/w (high performance liquid chromatography). CBD-loaded nanoparticles show a monomodal size distribution with sizes of up to 100 nm (dynamic light scattering), a spherical morphology, and the absence of CBD crystals (high resolution-scanning electron microscopy and cryogenic-transmission electron microscopy) which is in line with a very efficient nanoencapsulation. Then, the CBD release profile from the nanoparticles is assessed under gastric- and intestine-like conditions. At pH 1.2, only 10% of the payload is released after 1 h. Conversely, at pH 6.8, a release of 80% is recorded after 2 h. Finally, the oral pharmacokinetics is investigated in rats and compared to a free CBD suspension. CBD-loaded nanoparticles lead to a statistically significant ~ 20-fold increase of the maximum drug concentration in plasma (Cmax) and a shortening of the time to the Cmax (tmax) from 4 to 0.3 h, indicating a more complete and faster absorption than in free form. Moreover, the area-under-the-curve (AUC), a measure of oral bioavailability, increased by 14 times. Overall results highlight the promise of this simple, reproducible, and scalable nanotechnology strategy to improve the oral performance of CBD with respect to common oily formulations and/or lipid-based drug delivery systems associated with systemic adverse effects.


Assuntos
Canabidiol , Nanopartículas , Ratos , Animais , Polietilenoglicóis/química , Poliésteres/química , Nanopartículas/química , Portadores de Fármacos/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-35944268

RESUMO

Introduction: As the medical use of Cannabis is evolving there is a greater demand for high-quality products for patients. One of the main steps in the manufacturing process of medical Cannabis is drying. Most current drying methods in the Cannabis industry are relatively slow and inefficient processes. Materials and Methods: This article presents a drying method based on solid-state microwave (MW) that provides fast and uniform drying, and examines its efficiency for drying Cannabis inflorescences compared with the traditional drying method. We assessed 67 cannabinoids and 36 terpenoids in the plant in a range of drying temperatures (40°C, 50°C, 60°C, and 80°C). The identification and quantification of these secondary metabolites were done by chromatography methods. Results: This method resulted in a considerable reduction of drying time, from several days to a few hours. The multiple frequency-phase combination states of the system allowed control and prediction of moisture levels during drying, thus preventing overdrying. A drying temperature of 50°C provided the most effective results in terms of both short drying time and preservation of the composition of the secondary metabolites compared with traditional drying. At 50°C, the chemical profile of phytocannabinoids and terpenoids was best kept to that of the original plant before drying, suggesting less degradation by chemical reactions such as decarboxylation. The fast-drying time also reduced the susceptibility of the plant to microbial contamination. Conclusion: Our results support solid-state MW drying as an effective postharvest step to quickly dry the plant material for improved downstream processing with a minimal negative impact on product quality.

8.
Talanta ; 219: 121336, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887067

RESUMO

Increasing evidence for the therapeutic potential of Cannabis in numerous pathological and physiological conditions has led to a surge of studies investigating the active compounds in different chemovars and their mechanisms of action, as well as their efficacy and safety. The biological effects of Cannabis have been attributed to phytocannabinoid modulation of the endocannabinoid system. In-vitro and in-vivo studies have shown that pure phytocannabinoids can alter the levels of endocannabinoids and other cannabimimetic lipids. However, it is not yet understood whether whole Cannabis extracts exert variable effects on the endocannabinoid metabolome, and whether these effects vary between tissues. To address these challenges, we have developed and validated a novel analytical approach, termed "cannabinoidomics," for the simultaneous extraction and analysis of both endogenous and plant cannabinoids from different biological matrices. In the methodological development liquid chromatography high resolution tandem mass spectrometry (LC/HRMS/MS) was used to identify 57 phytocannabinoids, 15 major phytocannabinoid metabolites, and 78 endocannabinoids and cannabimimetic lipids in different biological matrices, most of which have no analytical standards. In the validation process, spiked cannabinoids were quantified with acceptable selectivity, repeatability, reproducibility, sensitivity, and accuracy. The power of this analytical method is demonstrated by analysis of serum and four different sections of mouse brains challenged with three different cannabidiol (CBD)-rich extracts. The results demonstrate that variations in the minor phytocannabinoid contents of the different extracts may lead to varied effects on endocannabinoid concentrations, and on the CBD metabolite profile in the peripheral and central systems. We also show that the Cannabis challenge significantly decreases the levels of several endocannabinoids in specific brain sections compared to the control group. This effect is extract-specific and suggests the importance of minor, other-than CBD, phytocannabinoid or non-phytocannabinoid compounds.


Assuntos
Cannabis , Maconha Medicinal , Animais , Endocanabinoides , Metaboloma , Camundongos , Reprodutibilidade dos Testes
9.
Clin Toxicol (Phila) ; 50(1): 39-43, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22148985

RESUMO

CONTEXT: Paramethoxymethamphetamine (PMMA) is a hallucinogenic synthetic substituted amphetamine that was not included in the Israeli Controlled Substance Act (CSA). OBJECTIVE: To report a severe PMMA and paramethoxyamphetamine (PMA) outbreak. PATIENTS AND METHODS: The Israeli national forensic toxicology laboratory analyzes the body fluids of unnatural deaths by means of screening immunoassays and chromatographic confirmation and quantification. Samples are referred to this laboratory by the Israeli Forensic Medicine Institute and by hospitals following consultation with the Israel Poison Information Center. The forensic toxicology laboratory began determining PMMA and PMA in February 2007. In all fatal cases with a positive immunoassay screen for amphetamines, a chromatographic analysis of PMA and PMMA was performed. The laboratory and demographic data of consecutive patients in whom PMMA or PMA were detected, were collected during 1 year and subjected to descriptive analysis. RESULTS: Of 108 fatal cases with a positive screen for amphetamines, 32 were confirmed. Twenty-four of the 32 cases tested positive for PMMA and PMA--age 27 ± 5 years, 79.2% males, post mortem whole blood PMMA and PMA concentrations 0.35 ± 0.24 and 2.72 ± 1.67 mcg/mL, respectively. Co-exposures were detected in 17 (70.8%) fatalities; including methylenedioxymethamphetamine, methylenedioxyamphetamine, cocaine, cannabinoids, cathinone derivatives, ephedrine/pseudoephedrine, opiates, and ethanol. In addition, five non-fatal male cases were identified; age 32 ± 5 years, four had co-exposures to cocaine, cathinone derivatives, and cannabinoids. These findings led to the inclusion of PMMA in the CSA in July 2007, resulting in only three more fatalities in the following year. DISCUSSION: We report an outbreak of PMMA and PMA poisoning resulting in 24 fatalities, and the post mortem whole blood and urine concentrations of these two compounds. PMA was probably the result of PMMA metabolism. Stimulant co-exposures may have contributed to the severity of the poisoning. CONCLUSION: Forensic laboratory and poison center co-operation is important in identifying a new drug of abuse.


Assuntos
Anfetaminas/intoxicação , Surtos de Doenças , Drogas Ilícitas/intoxicação , Metanfetamina/análogos & derivados , Intoxicação/epidemiologia , Adolescente , Adulto , Feminino , Humanos , Israel/epidemiologia , Masculino , Metanfetamina/intoxicação , Intoxicação/mortalidade , Detecção do Abuso de Substâncias/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA