Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Math Biosci ; 307: 25-32, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30414874

RESUMO

One of use cases for metabolic network optimisation of biotechnologically applied microorganisms is the in silico design of new strains with an improved distribution of metabolic fluxes. Global stochastic optimisation methods (genetic algorithms, evolutionary programing, particle swarm and others) can optimise complicated nonlinear kinetic models and are friendly for unexperienced user: they can return optimisation results with default method settings (population size, number of generations and others) and without adaptation of the model. Drawbacks of these methods (stochastic behaviour, undefined duration of optimisation, possible stagnation and no guaranty of reaching optima) cause optimisation result misinterpretation risks considering the very diverse educational background of the systems biology and synthetic biology research community. Different methods implemented in the COPASI software package are tested in this study to determine their ability to find feasible solutions and assess the convergence speed to the best value of the objective function. Special attention is paid to the potential misinterpretation of results. Optimisation methods are tested with additional constraints that can be introduced to ensure the biological feasibility of the resulting optimised design: (1) total enzyme activity constraint (called also amino acid pool constraint) to limit the sum of enzyme concentrations and (2) homeostatic constraint limiting steady state metabolite concentration corridor around the steady state concentrations of metabolites in the original model. Impact of additional constraints on the performance of optimisation methods and misinterpretation risks is analysed.


Assuntos
Enzimas , Homeostase , Redes e Vias Metabólicas , Modelos Biológicos , Saccharum/metabolismo , Processos Estocásticos , Sacarose/metabolismo , Leveduras/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-27071188

RESUMO

Selecting an efficient small set of adjustable parameters to improve metabolic features of an organism is important for a reduction of implementation costs and risks of unpredicted side effects. In practice, to avoid the analysis of a huge combinatorial space for the possible sets of adjustable parameters, experience-, and intuition-based subsets of parameters are often chosen, possibly leaving some interesting counter-intuitive combinations of parameters unrevealed. The combinatorial scan of possible adjustable parameter combinations at the model optimization level is possible; however, the number of analyzed combinations is still limited. The total optimization potential (TOP) approach is proposed to assess the full potential for increasing the value of the objective function by optimizing all possible adjustable parameters. This seemingly unpractical combination of adjustable parameters allows assessing the maximum attainable value of the objective function and stopping the combinatorial space scanning when the desired fraction of TOP is reached and any further increase in the number of adjustable parameters cannot bring any reasonable improvement. The relation between the number of adjustable parameters and the reachable fraction of TOP is a valuable guideline in choosing a rational solution for industrial implementation. The TOP approach is demonstrated on the basis of two case studies.


Assuntos
Biologia Computacional/métodos , Redes e Vias Metabólicas/fisiologia , Modelos Biológicos , Simulação por Computador , Enzimas , Fermentação , Glicólise , Saccharomyces cerevisiae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA