Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Geriatr ; 13: 104, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24093947

RESUMO

BACKGROUND: Sarcopenia is the progressive loss of skeletal muscle that contributes to the decline in physical function during aging. A higher level of oxidative stress has been implicated in aging sarcopenia. The current study aims to determine if the higher level of oxidative stress is a result of increased superoxide (O2‾) production by the NADPH oxidase (NOX) enzyme or decrease in endogenous antioxidant enzyme protection. METHODS: Female Balb/c mice were assigned to 4 age groups; 6, 12, 18 and 24 months. Body weight and animal survival rates were recorded over the course of the study. Skeletal muscle tissues were collected and used to measure NOX subunit mRNA, O2‾ levels and antioxidant enzymes. RESULTS: Key subunit components of NOX expression were elevated in skeletal muscle at 18 months, when sarcopenia was first evident. Increased superoxide dismutase 1 (SOD1) activity suggests an increase in O2‾ dismutation and this was further supported by elevated levels of hydrogen peroxide (H2O2) and decline in catalase and glutathione peroxidase (GPx) antioxidant protection in skeletal muscle at this time. NOX expression was also higher in skeletal muscle at 24 months, however this was coupled with elevated levels of O2‾ and a decline in SOD1 activity, compared to 6 and 12 months but was not associated with further loss of muscle mass. CONCLUSIONS: While the source of ROS in sarcopenic muscle remains unknown, this study provides evidence that the NOX enzyme could be involved in ROS production by regulating superoxide in ageing muscles. This study also suggests that H2O2 is the key ROS in the onset of sarcopenia and that the decline in antioxidant protection by catalase and GPx is indicative of antioxidant dysfunction and may therefore be a major contributing factor in the development or onset of sarcopenia. Furthermore, the changes in ROS and antioxidant activity after sarcopenia was first evident gives some evidence for a compensatory mechanism, in response to insult, in order to maintain muscle integrity.


Assuntos
Envelhecimento/metabolismo , Catalase/metabolismo , Glutationa Peroxidase/metabolismo , Peróxido de Hidrogênio/metabolismo , Músculo Esquelético/enzimologia , Sarcopenia/enzimologia , Envelhecimento/patologia , Animais , Antioxidantes/metabolismo , Biomarcadores/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo/fisiologia , Sarcopenia/patologia
2.
PLoS One ; 7(9): e45900, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029301

RESUMO

Cancer cachexia is a wasting condition, driven by systemic inflammation and oxidative stress. This study investigated eicosapentaenoic acid (EPA) in combination with oxypurinol as a treatment in a mouse model of cancer cachexia. Mice with cancer cachexia were randomized into 4 treatment groups (EPA (0.4 g/kg/day), oxypurinol (1 mmol/L ad-lib), combination, or control), and euthanized after 29 days. Analysis of oxidative damage to DNA, mRNA analysis of pro-oxidant, antioxidant and proteolytic pathway components, along with enzyme activity of pro- and antioxidants were completed on gastrocnemius muscle. The control group displayed earlier onset of tumor compared to EPA and oxypurinol groups (P<0.001). The EPA group maintained body weight for an extended duration (20 days) compared to the oxypurinol (5 days) and combination (8 days) groups (P<0.05). EPA (18.2±3.2 pg/ml) and combination (18.4±3.7 pg/ml) groups had significantly higher 8-OH-dG levels than the control group (12.9±1.4 pg/ml, P≤0.05) indicating increased oxidative damage to DNA. mRNA levels of GPx1, MURF1 and MAFbx were higher following EPA treatment compared to control (P≤0.05). Whereas oxypurinol was associated with higher GPx1, MnSOD, CAT, XDH, MURF1, MAFbx and UbB mRNA compared to control (P≤0.05). Activity of total SOD was higher in the oxypurinol group (32.2±1.5 U/ml) compared to control (27.0±1.3 U/ml, P<0.01), GPx activity was lower in the EPA group (8.76±2.0 U/ml) compared to control (14.0±1.9 U/ml, P<0.05), and catalase activity was lower in the combination group (14.4±2.8 U/ml) compared to control (20.9±2.0 U/ml, P<0.01). There was no change in XO activity. The increased rate of weight decline in mice treated with oxypurinol indicates that XO may play a protective role during the progression of cancer cachexia, and its inhibition is detrimental to outcomes. In combination with EPA, there was little significant improvement from control, indicating oxypurinol is unlikely to be a viable treatment compound in cancer cachexia.


Assuntos
Adenocarcinoma/complicações , Caquexia/tratamento farmacológico , Ácido Eicosapentaenoico/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Atrofia Muscular/tratamento farmacológico , Neoplasias Experimentais/complicações , Oxipurinol/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Animais , Caquexia/etiologia , Catalase/metabolismo , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Quimioterapia Combinada , Ácido Eicosapentaenoico/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/etiologia , Transplante de Neoplasias , Neoplasias Experimentais/tratamento farmacológico , Tamanho do Órgão/efeitos dos fármacos , Estresse Oxidativo , Oxipurinol/farmacologia , Superóxido Dismutase/metabolismo , Carga Tumoral , Redução de Peso/efeitos dos fármacos , Xantina Oxidase/antagonistas & inibidores , Xantina Oxidase/metabolismo
3.
Comp Hepatol ; 10(1): 10, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-22081873

RESUMO

BACKGROUND: Non alcoholic steatohepatitis is hypothesised to develop via a mechanism involving fat accumulation and oxidative stress. The current study aimed to investigate if an increase in oxidative stress was associated with changes in the expression of liver fatty acid binding protein in a rat model of non alcoholic steatohepatitis and whether cocoa supplementation attenuated those changes. METHODS: Female Sprague Dawley rats were fed a high fat control diet, a high fat methionine choline deficient diet, or one of four 12.5% cocoa supplementation regimes in combination with the high fat methionine choline deficient diet. RESULTS: Liver fatty acid binding protein mRNA and protein levels were reduced in the liver of animals with fatty liver disease when compared to controls. Increased hepatic fat content was accompanied by higher levels of oxidative stress in animals with fatty liver disease when compared to controls. An inverse association was found between the levels of hepatic liver fatty acid binding protein and the level of hepatic oxidative stress in fatty liver disease. Elevated NADPH oxidase protein levels were detected in the liver of animals with increased severity in inflammation and fibrosis. Cocoa supplementation was associated with partial attenuation of these pathological changes, although the severity of liver disease induced by the methionine choline deficient diet prevented complete reversal of any disease associated changes. Red blood cell glutathione was increased by cocoa supplementation, whereas liver glutathione was reduced by cocoa compared to methionine choline deficient diet fed animals. CONCLUSION: These findings suggest a potential role for liver fatty acid binding protein and NADPH oxidase in the development of non alcoholic steatohepatitis. Furthermore, cocoa supplementation may have be of therapeutic benefit in less sever forms of NASH.

4.
J Cachexia Sarcopenia Muscle ; 2(3): 181-188, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21966644

RESUMO

BACKGROUND: Cancer cachexia is the progressive loss of skeletal muscle protein that contributes significantly to cancer morbidity and mortality. Evidence of antioxidant attenuation and the presence of oxidised proteins in patients with cancer cachexia indicate a role for oxidative stress. The level of oxidative stress in tissues is determined by an imbalance between reactive oxygen species production and antioxidant activity. This study aimed to investigate the superoxide generating NADPH oxidase (NOX) enzyme and antioxidant enzyme systems in murine adenocarcinoma tumour-bearing cachectic mice. METHODS: Superoxide levels, mRNA levels of NOX enzyme subunits and the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidise (GPx) and catalase was measured in the skeletal muscle of mice with cancer and cancer cachexia. Protein expression levels of NOX enzyme subunits and antioxidant enzyme activity was also measured in the same muscle samples. RESULTS: Superoxide levels increased 1.4-fold in the muscle of mice with cancer cachexia, and this was associated with a decrease in mRNA of NOX enzyme subunits, NOX2, p40(phox) and p67(phox) along with the antioxidant enzymes SOD1, SOD2 and GPx. Cancer cachexia was also associated with a 1.3-fold decrease in SOD1 and 2.0-fold decrease in GPx enzyme activity. CONCLUSION: Despite increased superoxide levels in cachectic skeletal muscle, NOX enzyme subunits, NOX2, p40(phox) and p67(phox), were downregulated along with the expression and activity of the antioxidant enzymes. Therefore, the increased superoxide levels in cachectic skeletal muscle may be attributed to the reduction in the activity of endogenous antioxidant enzymes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA