Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Hum Exp Toxicol ; 41: 9603271211066065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35130744

RESUMO

Cardiovascular disorders are the leading cause of death globally. Rosuvastatin is a member of statins (inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase) with many pleiotropic properties. This study investigated cardioprotective effects of rosuvastatin in isoprenaline-induced myocardial injury. Male rats were given rosuvastatin (1, 5, or 10 mg/kg, oral) daily for 1 week and on seventh and eighth day isoprenaline (150 mg/kg, subcutaneous) was given to induce cardiac injury. On ninth day, rats were euthanized and different samples were harvested for analysis. Isoprenaline administration resulted in increased cardiac mass, increased cardiac injury marker levels (cTnI, CK-MB, ALT, and AST), increased lipid/protein oxidation, and increased cardiac nitrite levels. It also decreased superoxide dismutase, CAT, GST, and glutathione reductase activities, and total antioxidant activity. Isoprenaline also increased TNF-α and IL-6 levels. Decreased mRNA expression of Nrf2 and Bcl-2 along with increased mRNA expression of Bax, eNOS and iNOS genes was observed in isoprenaline treated animals. Histopathological evaluations of rosuvastatin pre-treated groups showed reduction of myocardial necrosis. Pretreatment with rosuvastatin (5 and 10 mg/kg) reduced many of these pathological changes. The current study showed that rosuvastatin significantly reduces myocardial injury induced by isoprenaline.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Isoproterenol/efeitos adversos , Infarto do Miocárdio/prevenção & controle , Fator 2 Relacionado a NF-E2/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/efeitos dos fármacos , Rosuvastatina Cálcica/administração & dosagem , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Antioxidantes , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Isoproterenol/uso terapêutico , Masculino , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/tratamento farmacológico , Fator 2 Relacionado a NF-E2/genética , Óxido Nítrico Sintase Tipo II/genética , Substâncias Protetoras/administração & dosagem , Proteínas Proto-Oncogênicas c-bcl-2/genética , Ratos , Ratos Wistar
2.
Drug Chem Toxicol ; 45(4): 1493-1499, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33148062

RESUMO

Estrogen and progesterone congeners as found in various oral contraceptive formulations have been implicated as the cause of cancer in sex and tissue-specific targets. The mechanism of carcinogenesis by sex steroids is still debatable. In this study, we evaluated the genotoxicity induced by two components of one of the commonly used oral contraceptive formulation; drospirenone and ethinylestradiol in human breast cells (MCF-7) in vitro and in bone marrow cells of female mice in vivo. DNA damage was assessed by alkaline comet assay. Both of the drugs produced DNA damage in human breast cells at exposure concentrations which are about 100-fold and above than normally found in human blood after their lowest recommended doses. The DNA damage was produced only after metabolic activation by mice liver S-9 fraction in both cases. The co-exposure with both the compounds at median exposure levels resulted in potentiation of DNA damage. In bone marrow cells of adult female mice, both the compounds produced DNA damage at human equivalent doses after exposure was carried out repeatedly for approximately one estrus cycle (5 days). The co-administration with the compounds resulted in potentiation of DNA damage as indicated by percent tail DNA in comet assay. Thus it is concluded that drospirenone and ethinylestradiol cause DNA damage in certain target specific tissue (mammary epithelial cells) and in female bone marrow cells. The co-exposure with drospirenone and ethinylestradiol results in potentiation of genotoxicity which may pose a threat of cancer development in women taking these drugs for long periods.


Assuntos
Dano ao DNA , Etinilestradiol , Androstenos , Animais , Células da Medula Óssea , Ensaio Cometa , Anticoncepcionais Orais , Etinilestradiol/toxicidade , Feminino , Humanos , Camundongos
3.
Chem Biol Interact ; 318: 108970, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32007421

RESUMO

Cardiovascular disorders constitute the principal cause of deaths worldwide and will continue as the major disease-burden by the year 2060. A significant proportion of heart failures occur because of use and misuse of drugs and most of the investigational agents fail to achieve any clinical relevance. Here, we investigated rosuvastatin and retinoic acid for their "pharmacological pleiotropy" against high dose ß-adrenergic agonist (isoproterenol)-induced acute myocardial insult. Rats were pretreated with rosuvastatin and/or retinoic acid for seven days and the myocardial injury was induced by administering isoproterenol on the seventh and eighth day. After induction, rats were anaesthetized for electrocardiography, then sacrificed and different samples were collected/stored for various downstream assays. Myocardial injury with isoproterenol resulted in increased cardiac mass, decreased R-wave amplitude, increased QRS and QT durations; elevated levels of cardiac markers like cTnI, CK-MB, ALT and AST; increased lipid peroxidation, protein carbonylation and tissue nitric oxide levels; decreased endogenous antioxidants like SOD, CAT, GR, GST, GPx and total antioxidant activity; increased inflammatory markers like TNF-α and IL-6; decreased the mRNA expression of Nrf2 and Bcl-2; increased the mRNA expression of Bax, eNOS and iNOS genes. Pretreatment with rosuvastatin and/or retinoic acid mitigated many of the above biochemical and pathological alterations. Our results demonstrate that rosuvastatin and retinoic acid exert cardioprotective effects and may act as potential agents in the prevention of ß-adrenergic agonist-induced acute myocardial injury in rats. Cardioprotective potential of rosuvastatin and retinoic acid could be attributed to their influence on the redox pathways, immunomodulation, membrane stability, Nrf2 preservation, iNOS and Bax expression levels. Thus, they may act directly or indirectly at various steps, the breakpoints, in the pathophysiological cascade responsible for cardiac injury. Our study gives insights about the pharmacological pleiotropism of rosuvastatin and retinoic acid.


Assuntos
Isoproterenol/toxicidade , Infarto do Miocárdio/induzido quimicamente , Infarto do Miocárdio/prevenção & controle , Rosuvastatina Cálcica/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tretinoína/farmacologia , Agonistas Adrenérgicos beta/toxicidade , Animais , Anticolesterolemiantes/farmacologia , Antineoplásicos/uso terapêutico , Peso Corporal/efeitos dos fármacos , Coração/anatomia & histologia , Coração/efeitos dos fármacos , Masculino , Tamanho do Órgão , Distribuição Aleatória , Ratos , Ratos Wistar
4.
Open Vet J ; 8(1): 25-34, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29445618

RESUMO

Cancer constitutes the major health problem both in human and veterinary medicine. Comparative oncology as an integrative approach offers to learn more about naturally occurring cancers across different species. Canine models have many advantages as they experience spontaneous disease, have many genes similar to human genes, five to seven-fold accelerated ageing compared to humans, respond to treatments similarly as humans do and health care levels second only to humans. Also, the clinical trials in canines could generate more robust data, as their spontaneous nature mimics real-life situations and could be translated to humans.

5.
Pharmacol Rep ; 69(4): 658-665, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28527876

RESUMO

BACKGROUND: Administration of recombinant erythropoietin (rEPO) is often associated with systemic and pulmonary arterial hypertension in animals and human. The present study was conducted to determine whether one-week rEPO-treatment can produce any effect on pulmonary vasomotor function. METHODS: Male Wistar rats were injected with rEPO (400IU/kg sc) or saline every other day for one week. Tension, biochemical and Real-Time PCR experiments were conducted on left and right branches of pulmonary artery and main pulmonary artery isolated from the rats. RESULTS: ACh-induced relaxation was significantly (p<0.05) reduced in rEPO-treated rats in comparison to control animals. Relaxation to the NO donor SNP was not different between the groups. EDHF-induced relaxation was remarkably higher in rEPO-treated group in comparison to control. Phenylephrine-induced contraction was significantly (p <0.05) reduced in rings from rEPO-treated rats at the second and third lowest concentrations of phenylephrine and its potency was not significantly reduced. No significant difference was observed in CaCl2-induced contraction between the groups. Nitric oxide production was significantly reduced in rEPO-treated rats in comparison to control animals. Real-time PCR studies demonstrated a significant decrease (p<0.05) of eNOS transcript. However, peNOS activity was not altered with rEPO treatment. CONCLUSION: The present study suggests that EPO-treatment for one week attenuates ACh-stimulated NO production. It does not affect the vasodilatory action of SNP. It showed up-regulation of EDHF and decreased potency of phenylephrine. Thus elevated EPO may diversely affect the vasomotor function of pulmonary artery. Clinically, it is important to observe the use of EPO in hypertensive condition.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Eritropoetina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Animais , Dipeptídeos/farmacologia , Esquema de Medicação , Eritropoetina/administração & dosagem , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Vasodilatação/efeitos dos fármacos
6.
J Cardiovasc Pharmacol Ther ; 21(1): 100-13, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26025460

RESUMO

We investigated the effect of erythropoietin (EPO) posttreatment on survival time and vascular functions in a mouse model of sepsis. Sepsis was induced by cecal ligation and puncture. After 20 ± 2 hours of sepsis, thoracic aorta was isolated for assessing its reactivity to norepinephrine (NE) and acetylcholine (ACh). We also measured the tissue nitric oxide (NO) level, inducible nitric oxide synthase (iNOS), endothelial nitric oxide synthase (eNOS), G protein-coupled receptor kinase 2 (GRK2), and α1D adrenoceptor messenger RNA (mRNA)/protein expression. In septic mice, EPO moderately improved the survival time from 19.68 ± 0.75 to 34.7 ± 3.2 hours. Sepsis significantly decreased the aortic contractile response to NE along with reduced α1D mRNA and protein expression. Erythropoietin significantly preserved the α1D receptor expression and restored NE-induced contractions to control levels in septic mice. Further, it attenuated the aortic α1D receptor desensitization in sepsis which was evident from reduced GRK2 mRNA expression. Accordingly, a selective GRK2 inhibitor markedly restored the contractile responses to NE in sepsis. Erythropoietin treatment attenuated iNOS mRNA expression and iNOS-induced overproduction of NO, but improved endothelium-dependent relaxation to ACh associated with increased eNOS mRNA expression. In conclusion, EPO seems to reverse sepsis-induced vasoplegia to NE through the preservation of α1D adrenoceptor mRNA/protein expression, inhibition of GRK2-mediated desensitization, and attenuation of NO overproduction in the mouse aorta.


Assuntos
Agonistas alfa-Adrenérgicos/farmacologia , Aorta Torácica/efeitos dos fármacos , Eritropoetina/farmacologia , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Norepinefrina/farmacologia , RNA Mensageiro/metabolismo , Receptores Adrenérgicos alfa 1/efeitos dos fármacos , Sepse/tratamento farmacológico , Vasoconstritores/farmacologia , Vasoplegia/prevenção & controle , Animais , Aorta Torácica/enzimologia , Aorta Torácica/fisiopatologia , Ceco/microbiologia , Ceco/cirurgia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Quinase 2 de Receptor Acoplado a Proteína G/antagonistas & inibidores , Quinase 2 de Receptor Acoplado a Proteína G/genética , Ligadura , Masculino , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Punções , RNA Mensageiro/genética , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Sepse/complicações , Sepse/enzimologia , Sepse/microbiologia , Sepse/fisiopatologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Vasoconstrição/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia , Vasoplegia/enzimologia , Vasoplegia/etiologia , Vasoplegia/genética , Vasoplegia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA