Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol Sci ; 23(6): 1087-1115, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38763938

RESUMO

The protection of Earth's stratospheric ozone (O3) is an ongoing process under the auspices of the universally ratified Montreal Protocol and its Amendments and adjustments. A critical part of this process is the assessment of the environmental issues related to changes in O3. The United Nations Environment Programme's Environmental Effects Assessment Panel provides annual scientific evaluations of some of the key issues arising in the recent collective knowledge base. This current update includes a comprehensive assessment of the incidence rates of skin cancer, cataract and other skin and eye diseases observed worldwide; the effects of UV radiation on tropospheric oxidants, and air and water quality; trends in breakdown products of fluorinated chemicals and recent information of their toxicity; and recent technological innovations of building materials for greater resistance to UV radiation. These issues span a wide range of topics, including both harmful and beneficial effects of exposure to UV radiation, and complex interactions with climate change. While the Montreal Protocol has succeeded in preventing large reductions in stratospheric O3, future changes may occur due to a number of natural and anthropogenic factors. Thus, frequent assessments of potential environmental impacts are essential to ensure that policies remain based on the best available scientific knowledge.


Assuntos
Ozônio Estratosférico , Raios Ultravioleta , Humanos , Ozônio Estratosférico/análise , Raios Ultravioleta/efeitos adversos , Ozônio/química , Mudança Climática
2.
Photochem Photobiol Sci ; 22(5): 1129-1176, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37310641

RESUMO

Ultraviolet (UV) radiation drives the net production of tropospheric ozone (O3) and a large fraction of particulate matter (PM) including sulfate, nitrate, and secondary organic aerosols. Ground-level O3 and PM are detrimental to human health, leading to several million premature deaths per year globally, and have adverse effects on plants and the yields of crops. The Montreal Protocol has prevented large increases in UV radiation that would have had major impacts on air quality. Future scenarios in which stratospheric O3 returns to 1980 values or even exceeds them (the so-called super-recovery) will tend to ameliorate urban ground-level O3 slightly but worsen it in rural areas. Furthermore, recovery of stratospheric O3 is expected to increase the amount of O3 transported into the troposphere by meteorological processes that are sensitive to climate change. UV radiation also generates hydroxyl radicals (OH) that control the amounts of many environmentally important chemicals in the atmosphere including some greenhouse gases, e.g., methane (CH4), and some short-lived ozone-depleting substances (ODSs). Recent modeling studies have shown that the increases in UV radiation associated with the depletion of stratospheric ozone over 1980-2020 have contributed a small increase (~ 3%) to the globally averaged concentrations of OH. Replacements for ODSs include chemicals that react with OH radicals, hence preventing the transport of these chemicals to the stratosphere. Some of these chemicals, e.g., hydrofluorocarbons that are currently being phased out, and hydrofluoroolefins now used increasingly, decompose into products whose fate in the environment warrants further investigation. One such product, trifluoroacetic acid (TFA), has no obvious pathway of degradation and might accumulate in some water bodies, but is unlikely to cause adverse effects out to 2100.


Assuntos
Poluição do Ar , Ozônio , Humanos , Ozônio Estratosférico , Poluição do Ar/efeitos adversos , Ozônio/análise , Atmosfera , Mudança Climática
3.
Photochem Photobiol Sci ; 21(3): 275-301, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35191005

RESUMO

The Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth's surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1-67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change.


Assuntos
Perda de Ozônio , Ozônio , Mudança Climática , Ecossistema , Humanos , Ozônio/química , Ozônio Estratosférico , Raios Ultravioleta
4.
Photochem Photobiol Sci ; 20(1): 1-67, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33721243

RESUMO

This assessment by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) provides the latest scientific update since our most recent comprehensive assessment (Photochemical and Photobiological Sciences, 2019, 18, 595-828). The interactive effects between the stratospheric ozone layer, solar ultraviolet (UV) radiation, and climate change are presented within the framework of the Montreal Protocol and the United Nations Sustainable Development Goals. We address how these global environmental changes affect the atmosphere and air quality; human health; terrestrial and aquatic ecosystems; biogeochemical cycles; and materials used in outdoor construction, solar energy technologies, and fabrics. In many cases, there is a growing influence from changes in seasonality and extreme events due to climate change. Additionally, we assess the transmission and environmental effects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is responsible for the COVID-19 pandemic, in the context of linkages with solar UV radiation and the Montreal Protocol.

5.
Photochem Photobiol Sci ; 19(5): 542-584, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32364555

RESUMO

This assessment, by the United Nations Environment Programme (UNEP) Environmental Effects Assessment Panel (EEAP), one of three Panels informing the Parties to the Montreal Protocol, provides an update, since our previous extensive assessment (Photochem. Photobiol. Sci., 2019, 18, 595-828), of recent findings of current and projected interactive environmental effects of ultraviolet (UV) radiation, stratospheric ozone, and climate change. These effects include those on human health, air quality, terrestrial and aquatic ecosystems, biogeochemical cycles, and materials used in construction and other services. The present update evaluates further evidence of the consequences of human activity on climate change that are altering the exposure of organisms and ecosystems to UV radiation. This in turn reveals the interactive effects of many climate change factors with UV radiation that have implications for the atmosphere, feedbacks, contaminant fate and transport, organismal responses, and many outdoor materials including plastics, wood, and fabrics. The universal ratification of the Montreal Protocol, signed by 197 countries, has led to the regulation and phase-out of chemicals that deplete the stratospheric ozone layer. Although this treaty has had unprecedented success in protecting the ozone layer, and hence all life on Earth from damaging UV radiation, it is also making a substantial contribution to reducing climate warming because many of the chemicals under this treaty are greenhouse gases.


Assuntos
Mudança Climática , Ozônio Estratosférico , Raios Ultravioleta , Saúde Ambiental , Humanos , Microplásticos , Nações Unidas
6.
Photochem Photobiol Sci ; 18(3): 747-774, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30810562

RESUMO

Global change influences biogeochemical cycles within and between environmental compartments (i.e., the cryosphere, terrestrial and aquatic ecosystems, and the atmosphere). A major effect of global change on carbon cycling is altered exposure of natural organic matter (NOM) to solar radiation, particularly solar UV radiation. In terrestrial and aquatic ecosystems, NOM is degraded by UV and visible radiation, resulting in the emission of carbon dioxide (CO2) and carbon monoxide, as well as a range of products that can be more easily degraded by microbes (photofacilitation). On land, droughts and land-use change can reduce plant cover causing an increase in exposure of plant litter to solar radiation. The altered transport of soil organic matter from terrestrial to aquatic ecosystems also can enhance exposure of NOM to solar radiation. An increase in emission of CO2 from terrestrial and aquatic ecosystems due to the effects of global warming, such as droughts and thawing of permafrost soils, fuels a positive feedback on global warming. This is also the case for greenhouse gases other than CO2, including methane and nitrous oxide, that are emitted from terrestrial and aquatic ecosystems. These trace gases also have indirect or direct impacts on stratospheric ozone concentrations. The interactive effects of UV radiation and climate change greatly alter the fate of synthetic and biological contaminants. Contaminants are degraded or inactivated by direct and indirect photochemical reactions. The balance between direct and indirect photodegradation or photoinactivation of contaminants is likely to change with future changes in stratospheric ozone, and with changes in runoff of coloured dissolved organic matter due to climate and land-use changes.


Assuntos
Atmosfera/análise , Mudança Climática , Ozônio Estratosférico/análise , Raios Ultravioleta , Animais , Regiões Árticas , Carbono/análise , Dióxido de Carbono/análise , Secas , Ecossistema , Poluentes Ambientais/análise , Água Doce/análise , Aquecimento Global , Efeito Estufa , Gases de Efeito Estufa/análise , Camada de Gelo/química , Recursos Naturais , Oceanos e Mares , Perda de Ozônio , Fotólise , Energia Solar
7.
Photochem Photobiol Sci ; 17(2): 127-179, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29404558

RESUMO

The Environmental Effects Assessment Panel (EEAP) is one of three Panels of experts that inform the Parties to the Montreal Protocol. The EEAP focuses on the effects of UV radiation on human health, terrestrial and aquatic ecosystems, air quality, and materials, as well as on the interactive effects of UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously held. Because of the Montreal Protocol, there are now indications of the beginnings of a recovery of stratospheric ozone, although the time required to reach levels like those before the 1960s is still uncertain, particularly as the effects of stratospheric ozone on climate change and vice versa, are not yet fully understood. Some regions will likely receive enhanced levels of UV radiation, while other areas will likely experience a reduction in UV radiation as ozone- and climate-driven changes affect the amounts of UV radiation reaching the Earth's surface. Like the other Panels, the EEAP produces detailed Quadrennial Reports every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). In the years in between, the EEAP produces less detailed and shorter Update Reports of recent and relevant scientific findings. The most recent of these was for 2016 (Photochem. Photobiol. Sci., 2017, 16, 107-145). The present 2017 Update Report assesses some of the highlights and new insights about the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. A full 2018 Quadrennial Assessment, will be made available in 2018/2019.

9.
Photochem Photobiol Sci ; 10(2): 261-79, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21253663

RESUMO

Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO(2) increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales.


Assuntos
Mudança Climática , Fenômenos Ecológicos e Ambientais , Retroalimentação/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Animais , Poluentes Ambientais/toxicidade , Humanos
11.
Photochem Photobiol Sci ; 6(3): 286-300, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17344963

RESUMO

This report assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are often linked to concurrent exposure to UV-A radiation (315-400 nm), which is influenced by global climate change. These interactions involving UV radiation (the combination of UV-B and UV-A) are central to the prediction and evaluation of future Earth environmental conditions. There is increasing evidence that elevated UV-B radiation has significant effects on the terrestrial biosphere with implications for the cycling of carbon, nitrogen and other elements. The cycling of carbon and inorganic nutrients such as nitrogen can be affected by UV-B-mediated changes in communities of soil organisms, probably due to the effects of UV-B radiation on plant root exudation and/or the chemistry of dead plant material falling to the soil. In arid environments direct photodegradation can play a major role in the decay of plant litter, and UV-B radiation is responsible for a significant part of this photodegradation. UV-B radiation strongly influences aquatic carbon, nitrogen, sulfur and metals cycling that affect a wide range of life processes. UV-B radiation changes the biological availability of dissolved organic matter to microorganisms, and accelerates its transformation into dissolved inorganic carbon and nitrogen, including carbon dioxide and ammonium. The coloured part of dissolved organic matter (CDOM) controls the penetration of UV radiation into water bodies, but CDOM is also photodegraded by solar UV radiation. Changes in CDOM influence the penetration of UV radiation into water bodies with major consequences for aquatic biogeochemical processes. Changes in aquatic primary productivity and decomposition due to climate-related changes in circulation and nutrient supply occur concurrently with exposure to increased UV-B radiation, and have synergistic effects on the penetration of light into aquatic ecosystems. Future changes in climate will enhance stratification of lakes and the ocean, which will intensify photodegradation of CDOM by UV radiation. The resultant increase in the transparency of water bodies may increase UV-B effects on aquatic biogeochemistry in the surface layer. Changing solar UV radiation and climate also interact to influence exchanges of trace gases, such as halocarbons (e.g., methyl bromide) which influence ozone depletion, and sulfur gases (e.g., dimethylsulfide) that oxidize to produce sulfate aerosols that cool the marine atmosphere. UV radiation affects the biological availability of iron, copper and other trace metals in aquatic environments thus potentially affecting metal toxicity and the growth of phytoplankton and other microorganisms that are involved in carbon and nitrogen cycling. Future changes in ecosystem distribution due to alterations in the physical and chemical climate interact with ozone-modulated changes in UV-B radiation. These interactions between the effects of climate change and UV-B radiation on biogeochemical cycles in terrestrial and aquatic systems may partially offset the beneficial effects of an ozone recovery.


Assuntos
Carbono/metabolismo , Efeito Estufa , Metais/metabolismo , Raios Ultravioleta , Animais , Ecossistema , Oxirredução/efeitos da radiação
12.
Environ Sci Technol ; 35(16): 3314-20, 2001 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-11529570

RESUMO

The purpose of this study was to examine the various factors that control the kinetics of diuron degradation in irradiated, aerated suspensions containing goethite (alpha-FeOOH) and oxalate, in the following denoted as heterogeneous photo-Fenton systems. In these systems, attack by hydroxyl radicals (HO.) was the only pathway of diuron degradation. Studies were conducted in systems containing initially 80 or 200 mg L(-1) goethite (corresponding to 0.9 or 2.25 mM total iron) and 20, 50, 75, 100, 200, and 400 microM oxalate at 3 < or = pH < or = 6. Both oxalate concentration and pH greatly affected the rate of light-induced diuron transformation. In the presence of initial 200 microM oxalate, the rate of diuron degradation was maximal at pH 4, coinciding with the maximal extent of oxalate adsorption on the surface of goethite. At pH 4,the rate of light-induced diuron degradation increased with increasing oxalate concentration, reaching a plateau at initial 200 microM oxalate, i.e., at the oxalate solution concentration at which the extent of oxalate adsorption on the surface of goethite reached a maximum. These experimental results suggest that the rate of Fe(II)(aq) formation through photochemical reductive dissolution of goethite, with oxalate acting as electron donor, determines the kinetics of diuron degradation in these heterogeneous photo-Fenton systems.


Assuntos
Diurona/química , Herbicidas/química , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Oxalatos/química , Solubilidade
13.
Environ Sci Technol ; 29(12): 2992-3000, 1995 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22148207
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA