Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 327(5): H1230-H1243, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39331023

RESUMO

Heart failure is a major cause of mortality following myocardial infarction. Neutrophils are among the first immune cells to accumulate in the infarcted region. Although beneficial functions of neutrophils in heart injury are now appreciated, neutrophils are also well known for their ability to exacerbate inflammation and promote tissue damage. Myocardial infarction induces hypoxia, where hypoxia-inducible factors (HIFs) are activated and play critical roles in cellular functions. In this context, the role of Hif2α in neutrophils during myocardial infarction is unknown. Here, we demonstrate that neutrophil Hif2α deletion markedly attenuates myocardial infarct size, improves cardiac function, reduces neutrophil survival and tissue accumulation, and correlates with increased macrophage engulfment rates. Mechanistic studies revealed that Hif2α promotes neutrophil survival through binding to hypoxia response element (HRE) in the promoter region of Birc2 to regulate expression of the prosurvival factor, cellular inhibitor of apoptosis protein-1 (cIAP1). Inhibition of cIAP1 in neutrophils using the pharmacological agent, Birinapant resulted in increased cell death, establishing a critical role of cIAP1 downstream of Hif2α in neutrophil survival. Taken together, our data demonstrate a protective effect of Hif2α deletion in neutrophils on cardiac injury outcomes through modulation of neutrophil cell survival.NEW & NOTEWORTHY Hif2α in neutrophils increases infarct size, cardiac dysfunction, and ventricular scar after myocardial infarction. Hif2α in neutrophils supports neutrophil survival via cIAP-1 signaling and delays macrophage engulfment.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos , Sobrevivência Celular , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Neutrófilos , Animais , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/imunologia , Neutrófilos/metabolismo , Neutrófilos/imunologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas Inibidoras de Apoptose/genética , Camundongos Knockout , Camundongos , Masculino , Modelos Animais de Doenças , Macrófagos/metabolismo , Fagocitose , Miocárdio/metabolismo , Miocárdio/patologia , Miocárdio/imunologia , Transdução de Sinais , Infiltração de Neutrófilos , Função Ventricular Esquerda
2.
Cell Rep Med ; 5(3): 101441, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38428427

RESUMO

While immunotherapy has revolutionized cancer treatment, its safety has been hampered by immunotherapy-related adverse events. Unexpectedly, we show that Mediator complex subunit 1 (MED1) is required for T regulatory (Treg) cell function specifically in the tumor microenvironment. Treg cell-specific MED1 deletion does not predispose mice to autoimmunity or excessive inflammation. In contrast, MED1 is required for Treg cell promotion of tumor growth because MED1 is required for the terminal differentiation of effector Treg cells in the tumor. Suppression of these terminally differentiated Treg cells is sufficient for eliciting antitumor immunity. Both human and murine Treg cells experience divergent paths of differentiation in tumors and matched tissues with non-malignant inflammation. Collectively, we identify a pathway promoting the differentiation of a Treg cell effector subset specific to tumors and demonstrate that suppression of a subset of Treg cells is sufficient for promoting antitumor immunity in the absence of autoimmune consequences.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Animais , Camundongos , Subunidade 1 do Complexo Mediador/metabolismo , Fatores de Transcrição Forkhead , Neoplasias/patologia , Inflamação/metabolismo , Microambiente Tumoral
3.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38329810

RESUMO

Neutrophil (PMN) tissue accumulation is an established feature of ulcerative colitis (UC) lesions and colorectal cancer (CRC). To assess the PMN phenotypic and functional diversification during the transition from inflammatory ulceration to CRC we analyzed the transcriptomic landscape of blood and tissue PMNs. Transcriptional programs effectively separated PMNs based on their proximity to peripheral blood, inflamed colon, and tumors. In silico pathway overrepresentation analysis, protein-network mapping, gene signature identification, and gene-ontology scoring revealed unique enrichment of angiogenic and vasculature development pathways in tumor-associated neutrophils (TANs). Functional studies utilizing ex vivo cultures, colitis-induced murine CRC, and patient-derived xenograft models demonstrated a critical role for TANs in promoting tumor vascularization. Spp1 (OPN) and Mmp14 (MT1-MMP) were identified by unbiased -omics and mechanistic studies to be highly induced in TANs, acting to critically regulate endothelial cell chemotaxis and branching. TCGA data set and clinical specimens confirmed enrichment of SPP1 and MMP14 in high-grade CRC but not in patients with UC. Pharmacological inhibition of TAN trafficking or MMP14 activity effectively reduced tumor vascular density, leading to CRC regression. Our findings demonstrate a niche-directed PMN functional specialization and identify TAN contributions to tumor vascularization, delineating what we believe to be a new therapeutic framework for CRC treatment focused on TAN angiogenic properties.


Assuntos
Colite Ulcerativa , Colite , Neoplasias Colorretais , Humanos , Camundongos , Animais , Neutrófilos/patologia , Metaloproteinase 14 da Matriz , Colite Ulcerativa/metabolismo , Neovascularização Patológica/metabolismo , Colite/metabolismo , Neoplasias Colorretais/patologia
4.
Am J Pathol ; 194(1): 2-12, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918801

RESUMO

Neutrophils [polymorphonuclear leukocytes (PMNs)] execute important effector functions protecting the host against invading pathogens. However, their activity in tissue can exacerbate inflammation and inflammation-associated tissue injury and tumorigenesis. Until recently, PMNs were considered to be short-lived, terminally differentiated phagocytes. However, this view is rapidly changing with the emerging evidence of increased PMN lifespan in tissues, PMN plasticity, and phenotypic heterogeneity. Specialized PMN subsets have been identified in inflammation and in developing tumors, consistent with both beneficial and detrimental functions of PMNs in these conditions. Because PMN and tumor-associated neutrophil activity and the resulting beneficial/detrimental impacts primarily occur after homing to inflamed tissue/tumors, studying the underlying mechanisms of PMN/tumor-associated neutrophil trafficking is of high interest and clinical relevance. This review summarizes some of the key findings from over a decade of work from my laboratory and others on the regulation of PMN recruitment and identification of phenotypically and functionally diverse PMN subtypes as they pertain to gut inflammation and colon cancer.


Assuntos
Neoplasias , Neutrófilos , Humanos , Neutrófilos/patologia , Inflamação/patologia , Neoplasias/patologia
5.
J Clin Invest ; 133(15)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261911

RESUMO

Neutrophil (PMN) mobilization to sites of insult is critical for host defense and requires transendothelial migration (TEM). TEM involves several well-studied sequential adhesive interactions with vascular endothelial cells (ECs); however, what initiates or terminates this process is not well-understood. Here, we describe what we believe to be a new mechanism where vessel-associated macrophages through localized interactions primed EC responses to form ICAM-1 "hot spots" to support PMN TEM. Using real-time intravital microscopy of LPS-inflamed intestines in CX3CR1-EGFP macrophage-reporter mice, complemented by whole-mount tissue imaging and flow cytometry, we found that macrophage vessel association is critical for the initiation of PMN-EC adhesive interactions, PMN TEM, and subsequent accumulation in the intestinal mucosa. Anti-colony stimulating factor 1 receptor Ab-mediated macrophage depletion in the lamina propria and at the vessel wall resulted in elimination of ICAM-1 hot spots impeding PMN-EC interactions and TEM. Mechanistically, the use of human clinical specimens, TNF-α-KO macrophage chimeras, TNF-α/TNF receptor (TNF-α/TNFR) neutralization, and multicellular macrophage-EC-PMN cocultures revealed that macrophage-derived TNF-α and EC TNFR2 axis mediated this regulatory mechanism and was required for PMN TEM. As such, our findings identified clinically relevant mechanisms by which macrophages regulate PMN trafficking in inflamed mucosa.


Assuntos
Células Endoteliais , Molécula 1 de Adesão Intercelular , Humanos , Camundongos , Animais , Células Endoteliais/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Adesão Celular/fisiologia , Infiltração de Neutrófilos , Células Cultivadas , Mucosa Intestinal/metabolismo , Neutrófilos/metabolismo , Macrófagos/metabolismo , Endotélio Vascular/metabolismo
6.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293108

RESUMO

Myeloperoxidase (MPO) is one of the most abundantly expressed proteins in neutrophils. It serves as a critical component of the antimicrobial defense system, facilitating microbial killing via generation of reactive oxygen species (ROS). Interestingly, emerging evidence indicates that in addition to the well-recognized canonical antimicrobial function of MPO, it can directly or indirectly impact immune cells and tissue responses in homeostatic and disease states. Here, we highlight the emerging non-canonical functions of MPO, including its impact on neutrophil longevity, activation and trafficking in inflammation, its interactions with other immune cells, and how these interactions shape disease outcomes. We further discuss MPO interactions with barrier forming endothelial and epithelial cells, specialized cells of the central nervous system (CNS) and its involvement in cancer progression. Such diverse function and the MPO association with numerous inflammatory disorders make it an attractive target for therapies aimed at resolving inflammation and limiting inflammation-associated tissue damage. However, while considering MPO inhibition as a potential therapy, one must account for the diverse impact of MPO activity on various cellular compartments both in health and disease.


Assuntos
Neoplasias , Peroxidase , Humanos , Peroxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Inflamação/metabolismo , Neutrófilos/metabolismo , Neoplasias/metabolismo
7.
Front Pharmacol ; 13: 1011115, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313299

RESUMO

Ulcerative colitis (UC) is a chronic relapsing disease featuring aberrant accumulation of neutrophils in colonic mucosa and the luminal space. Although significant advances in UC therapy have been made with the development of novel biologics and small molecules targeting immune responses, success of most current therapies is still limited, with significant safety concerns. Thus, there is a need to develop additional safe and effective therapies for the treatment of UC. Antimalarial drugs have been safely used for many years to resolve tissue inflammation and the associated pathologies. Atovaquone is a recent FDA-approved antimalarial drug that has shown anti-viral and tumor-suppressive properties in vitro however, its role in mucosal inflammation has not been evaluated. Using pre-clinical murine DSS-induced colitis model combined with complementary in vivo peritonitis and ex vivo human neutrophil activation and chemotaxis assays we investigated functional and mechanistic impacts of atovaquone on disease resolution and neutrophil trafficking. We demonstrate that atovaquone promotes resolution of DSS-induced murine colitis by reducing neutrophil accumulation in the inflamed colonic mucosa. Mechanistically, we show that atovaquone suppressed induction of CD11b expression in neutrophils, reducing their polarization and migratory ability. Thus, our findings identify a new role of atovaquone in promoting resolution of mucosal inflammation, supporting the idea of potential repurposing of this FDA-approved drug as UC therapeutic.

8.
Mutat Res ; 824: 111778, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35334355

RESUMO

Two recent studies by Bui and Butin-Israeli et al. have established the novel contribution of neutrophils to genomic instability induction and aberrant shaping of the DNA repair landscape, particularly observed in patients with inflammatory bowel diseases (IBD) and/or progressive colorectal cancer (CRC). In addition, these back-to-back studies uncovered a sharp increase in the numbers of micronuclei and lagging chromosomes in pre-cancerous and cancerous epithelium in response to prolonged PMN exposure. Given the emerging link between neutrophils and micronuclei as well as the established role of micronuclei in cGAS/STING activation, this special commentary aims to elaborate on the mechanisms by which CRC cells may adapt to neutrophil-driven genomic instability while concurrently sustain an inflamed tumor niche. We postulate that such tumor microenvironment with constant immune cell presence, inflammatory milieu, and cumulative DNA damage can drive tumor adaptation and resistance to therapeutic interventions. Finally, we discuss potential novel therapeutic approaches that can be leveraged to target this emerging neutrophil-micronuclei pathological axis, thereby preventing perpetual CRC inflammation and unwanted tumor adaptation.


Assuntos
Neoplasias , Neutrófilos , Dano ao DNA/genética , Instabilidade Genômica , Humanos , Inflamação/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Microambiente Tumoral/genética
9.
Biochem Biophys Rep ; 30: 101252, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35313644

RESUMO

Colon cancer (CC) is the third most common neoplasm and the fourth cause of cancer-related death worldwide in both sexes. It has been established that inflammation plays a critical role in tumorigenesis and progression of CC. Immune, stromal and tumor cells supply the tumor microenvironment with pro-inflammatory cytokines such as interleukin 1ß, TNFα, IL-6 and IL-11, to hyperactivate signaling pathways linked to cancerous processes. Recent findings suggest a putative role of microRNAs (miRNAs) in the progression and management of the inflammatory response in intestinal diseases. Moreover, miRNAs are able to regulate expression of molecular mediators that are linking inflammation and cancer. In this work a miRNA panel differentially expressed between healthy, inflammatory bowel disease (IBD) and CC tissue was established. Identified miRNAs regulate signaling pathways related to inflammation and cancer progression. An inflammation associated-miRNA panel composed of 11-miRNAs was found to be overexpressed in CC but not in inflamed or normal tissues (miR-21-5p, miR-304-5p, miR-577, miR-335-5p, miR-21-3p, miR-27b-5p, miR-335-3p, miR-215-5p, miR-30b-5p, miR-192-5p, miR-3065-5p). The association of top hit miRNAs, miR-3065-5p and miR-30b-5p expression with overall survival of CC patients was demonstrated using Kaplan-Meier tests. Finally, differential miRNA expression was validated using an inflammation-associated CC model induced by Azoxymethane/Dextran Sodium Sulfate (AOM/DSS) to compare miRNA expression in normal and inflamed tissue versus CC tissues. Based on these findings we propose the identified inflammatory miRNA panel as a potent diagnostic tool for CC determination.

10.
Curr Opin Pharmacol ; 63: 102191, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35276496

RESUMO

Immune cell mobilization and their accumulation in the extravascular space is a key consequence of tissue injury. Maladaptive trafficking and immune activation following reperfusion of ischemic tissue can exacerbate tissue repair. After ischemic injury such as myocardial infarction (MI), PMNs are the first cells to arrive at the sites of insult and their response is critical for the sequential progression of ischemia from inflammation to resolution and finally to tissue repair. However, PMN-induced inflammation can also be detrimental to cardiac function and ultimately lead to heart failure. In this review, we highlight the role of PMNs during key cellular and molecular events of ischemic heart failure. We address new research on PMN metabolism, and how this orchestrates diverse functions such as PMN chemotaxis, degranulation, and phagocytosis. Particular focus is given to PMN metabolism regulation by mitochondrial function and mTOR kinase activity.


Assuntos
Insuficiência Cardíaca , Neutrófilos , Insuficiência Cardíaca/metabolismo , Humanos , Inflamação/metabolismo , Isquemia/metabolismo , Neutrófilos/metabolismo
11.
Am J Pathol ; 192(2): 295-307, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767810

RESUMO

Peripheral monocyte-derived CX3C chemokine receptor 1 positive (CX3CR1+) cells play important roles in tissue homeostasis and gut repopulation. Increasing evidence also supports their role in immune repopulation of the brain parenchyma in response to systemic inflammation. Adoptive bone marrow transfer from CX3CR1 fluorescence reporter mice and high-resolution confocal microscopy was used to assess the time course of CX3CR1+ cell repopulation of steady-state and dextran sodium sulfate (DSS)-inflamed small intestine/colon and the brain over 4 weeks after irradiation. CX3CR1+ cell colonization and morphologic polarization into fully ramified cells occurred more rapidly in the small intestine than in the colon. For both organs, the crypt/mucosa was more densely populated than the serosa/muscularis layer, indicating preferential temporal and spatial occupancy. Repopulation of the brain was delayed compared with that of gut tissue, consistent with the immune privilege of this organ. However, DSS-induced colon injury accelerated the repopulation. Expression analyses confirmed increased chemokine levels and macrophage colonization within the small intestine/colon and the brain by DSS-induced injury. Early increases of transmembrane protein 119 and ionized calcium binding adaptor molecule 1 expression within the brain after colon injury suggest immune-priming effect of brain resident microglia in response to systemic inflammation. These findings identify temporal differences in immune repopulation of the gut and brain in response to inflammation and show that gut inflammation can impact immune responses within the brain.


Assuntos
Lesões Encefálicas/imunologia , Encéfalo/imunologia , Receptor 1 de Quimiocina CX3C/imunologia , Colite/imunologia , Mucosa Intestinal/imunologia , Monócitos/imunologia , Lesões Experimentais por Radiação/metabolismo , Animais , Encéfalo/patologia , Lesões Encefálicas/genética , Lesões Encefálicas/patologia , Receptor 1 de Quimiocina CX3C/genética , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Sulfato de Dextrana/toxicidade , Mucosa Intestinal/fisiologia , Camundongos , Camundongos Transgênicos , Monócitos/patologia , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/patologia
13.
Expert Opin Ther Targets ; 25(7): 573-583, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34236924

RESUMO

Introduction: Neutrophils or polymorphonuclear cells (PMNs) account for a considerable portion of the tumor immune stroma. Emerging single-cell transcriptomic analyses have elucidated the striking cellular heterogeneity of PMNs during homeostasis and pathologic conditions and have established their diverse roles in cancer. PMNs have emerged as important players in cancer pathobiology and therapeutic resistance. Tumor-associated neutrophils (TANs) effector functions influence tumor development and resistance or response to therapy.Areas covered: This review focuses on PMN heterogeneity and functional diversity in the context of carcinogenesis. TANs, by activating diverse signaling pathways, contribute to cancer progression and resistance to therapies. Mechanisms by which TANs impact therapeutic resistance include alterations of the tumoral DNA damage response, angiogenesis, reactivation of cancer dormancy, enhancement of tumor cell proliferation/survival and immune evasion.Expert opinion: With the emerging phenotypic and function heterogeneity of TANs, targeting specific TAN functions in developing tumors can lead to translatable therapeutic approaches and limit drug resistance. We propose that combining specific targeting of TAN activity with standard cancer therapy can help patients achieving a complete response and prevent cancer relapse.


Assuntos
Neoplasias , Neutrófilos , Carcinogênese/metabolismo , Resistencia a Medicamentos Antineoplásicos , Humanos , Neoplasias/patologia , Neutrófilos/metabolismo , Microambiente Tumoral
14.
Front Immunol ; 12: 654259, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959129

RESUMO

Neutrophil (PMN) recruitment to sites of insult is critical for host defense, however excessive PMN activity and tissue accumulation can lead to exacerbated inflammation and injury. Myeloperoxidase (MPO) is a PMN azurophilic granule enzyme, which together with H2O2, forms a powerful antimicrobial system designed to kill ingested bacteria. Intriguingly, in addition to intracellular killing of invading microorganisms and extracellular tissue damage due generation of ROS, soluble MPO has been directly implicated in modulating cellular responses and tissue homeostasis. In the current work, we used several models of inflammation, murine and human PMNs and state-of-the-art intravital microscopy to examine the effect of MPO on PMN migration and tissue accumulation. We found that in the absence of functional MPO (MPO knockout, KO mice) inflammatory PMN tissue accumulation was significantly enhanced. We determined that the elevated numbers of PMNs in MPO knockout mice was not due to enhanced viability, but due to increased migratory ability. Acute PMN migration in models of zymosan-induced peritonitis or ligated intestinal loops induced by intraluminal administration of PMN-chemokine CXCL1 was increased over 2-fold in MPO KO compared to wild type (WT) mice. Using real-time intravital imaging of inflamed mouse cremaster muscle and ex vivo PMN co-culture with inflamed endothelial cells (ECs) we demonstrate that elevated migration of MPO KO mice was due to enhanced adhesive interactions. In contrast, addition of soluble recombinant MPO both in vivo and ex vivo diminished PMN adhesion and migration. Although MPO has been previously suggested to bind CD11b, we found no significant difference in CD11b expression in either resting or activated PMNs and further showed that the MPO binding to the PMN surface is not specific to CD11b. As such, our data identify MPO as a novel regulator of PMN trafficking in inflammation.


Assuntos
Quimiotaxia de Leucócito/imunologia , Inflamação/etiologia , Inflamação/metabolismo , Infiltração de Neutrófilos/imunologia , Neutrófilos/imunologia , Neutrófilos/metabolismo , Peroxidase/metabolismo , Animais , Quimiotaxia de Leucócito/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Expressão Gênica , Inflamação/patologia , Camundongos , Camundongos Knockout , Infiltração de Neutrófilos/genética , Peroxidase/genética
15.
Gastroenterology ; 161(1): 225-238.e15, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33753103

RESUMO

BACKGROUND & AIMS: Tumor-infiltrating neutrophils (polymorphonuclear neutrophils [PMNs]) are a prominent feature of colorectal cancer (CRC), where they can promote cytotoxicity or exacerbate disease outcomes. We recently showed that in acute colon injury, PMNs can increase DNA double-strand break (DSB) burden and promote genomic instability via microRNA-dependent inhibition of homologous recombination (HR) repair. In this study, we aimed to establish whether in inflamed colon, neutrophils shape the DSB-repair responses to impact CRC progression and sensitivity/resistance to DNA-repair targeted therapy. METHODS: Human sporadic CRC biopsies, The Cancer Genome Atlas gene expression analyses, tumor xenografts, and murine CRC models, as well as small-molecule inhibition of key DSB-repair factors were leveraged to investigate changes in the DSB-repair landscape and identify unique CRC responses with/without tumor infiltration by PMNs. RESULTS: We reveal that neutrophils exert a functional dualism in cancer cells, driving temporal modulation of the DNA damage landscape and resolution of DSBs. PMNs were found to promote HR deficiency in low-grade CRC by miR-155-dependent downregulation of RAD51, thus attenuating tumor growth. However, neutrophil-mediated genotoxicity due to accumulation of DSBs led to the induction of non-homologous end-joining (NHEJ), allowing for survival and growth of advanced CRC. Our findings identified a PMN-induced HR-deficient CRC phenotype, featuring low RAD51 and low Ku70 levels, rendering it susceptible to synthetic lethality induced by clinically approved PARP1 inhibitor Olaparib. We further identified a distinct PMN-induced HR-deficient CRC phenotype, featuring high Ku70 and heightened NHEJ, which can be therapeutically targeted by specific inhibition of NHEJ. CONCLUSIONS: Our work delineates 2 mechanism-based translatable therapeutic interventions in sporadic CRC.


Assuntos
Neoplasias Associadas a Colite/imunologia , Neoplasias Colorretais/imunologia , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Neutrófilos/imunologia , Microambiente Tumoral/imunologia , Animais , Técnicas de Cocultura , Neoplasias Associadas a Colite/tratamento farmacológico , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Bases de Dados Genéticas , Células HCT116 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , MicroRNAs/metabolismo , Neutrófilos/metabolismo , Fenótipo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Leukoc Biol ; 109(3): 473-475, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32991752

RESUMO

Discussion on the emerging evidence of phenotypic and functional PMN heterogeneity in tissue and implications for health and disease outcomes.


Assuntos
Neutrófilos , Diferenciação Celular
17.
Animal Model Exp Med ; 3(2): 117-129, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32613171

RESUMO

OBJECTIVE: Cell structural changes are one of the main features observed during the development of amyotrophic lateral sclerosis (ALS). In this work, we propose the use of diffusion tensor imaging (DTI) metrics to assess specific ultrastructural changes in the central nervous system during the early neurodegenerative stages of ALS. METHODS: Ultra-high field MRI and DTI data at 17.6T were obtained from fixed, excised mouse brains, and spinal cords from ALS (G93A-SOD1) mice. RESULTS: Changes in fractional anisotropy (FA) and linear, planar, and spherical anisotropy ratios (CL, CP, and CS, respectively) of the diffusion eigenvalues were measured in white matter (WM) and gray matter (GM) areas associated with early axonal degenerative processes (in both the brain and the spinal cord). Specifically, in WM structures (corpus callosum, corticospinal tract, and spinal cord funiculi) as the disease progressed, FA, CL, and CP values decreased, whereas CS values increased. In GM structures (prefrontal cortex, hippocampus, and central spinal cord) FA and CP decreased, whereas the CL and CS values were unchanged or slightly smaller. Histological studies of a fluorescent mice model (YFP, G93A-SOD1 mouse) corroborated the early alterations in neuronal morphology and axonal connectivity measured by DTI. CONCLUSIONS: Changes in diffusion tensor shape were observed in this animal model at the early, nonsymptomatic stages of ALS. Further studies of CL, CP, and CS as imaging biomarkers should be undertaken to refine this neuroimaging tool for future clinical use in the detection of the early stages of ALS.

18.
Nat Commun ; 11(1): 3172, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576838

RESUMO

Bone marrow engraftment of the hematopoietic stem and progenitor cells (HSPCs) involves homing to the vasculatures and lodgment to their niches. How HSPCs transmigrate from the vasculature to the niches is unclear. Here, we show that loss of diaphanous-related formin mDia2 leads to impaired engraftment of long-term hematopoietic stem cells and loss of competitive HSPC repopulation. These defects are likely due to the compromised trans-endothelial migration of HSPCs since their homing to the bone marrow vasculatures remained intact. Mechanistically, loss of mDia2 disrupts HSPC polarization and induced cytoplasmic accumulation of MAL, which deregulates the activity of serum response factor (SRF). We further reveal that beta2 integrins are transcriptional targets of SRF. Knockout of beta2 integrins in HSPCs phenocopies mDia2 deficient mice. Overexpression of SRF or beta2 integrins rescues HSPC engraftment defects associated with mDia2 deficiency. Our findings show that mDia2-SRF-beta2 integrin signaling is critical for HSPC lodgment to the niches.


Assuntos
Antígenos CD18/metabolismo , Forminas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , NADPH Desidrogenase/metabolismo , Animais , Medula Óssea/metabolismo , Modelos Animais de Doenças , Forminas/genética , Transplante de Células-Tronco Hematopoéticas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/genética , NADPH Desidrogenase/genética , Transdução de Sinais
19.
J Leukoc Biol ; 108(3): 787-799, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182390

RESUMO

ICAM-1 is a cell surface glycoprotein and an adhesion receptor that is best known for regulating leukocyte recruitment from circulation to sites of inflammation. However, in addition to vascular endothelial cells, ICAM-1 expression is also robustly induced on epithelial and immune cells in response to inflammatory stimulation. Importantly, ICAM-1 serves as a biosensor to transduce outside-in-signaling via association of its cytoplasmic domain with the actin cytoskeleton following ligand engagement of the extracellular domain. Thus, ICAM-1 has emerged as a master regulator of many essential cellular functions both at the onset and at the resolution of pathologic conditions. Because the role of ICAM-1 in driving inflammatory responses is well recognized, this review will mainly focus on newly emerging roles of ICAM-1 in epithelial injury-resolution responses, as well as immune cell effector function in inflammation and tumorigenesis. ICAM-1 has been of clinical and therapeutic interest for some time now; however, several attempts at inhibiting its function to improve injury resolution have failed. Perhaps, better understanding of its beneficial roles in resolution of inflammation or its emerging function in tumorigenesis will spark new interest in revisiting the clinical value of ICAM-1 as a potential therapeutic target.


Assuntos
Carcinogênese , Inflamação/fisiopatologia , Molécula 1 de Adesão Intercelular/fisiologia , Cicatrização/fisiologia , Processamento Alternativo , Animais , Biomarcadores , Quimiotaxia de Leucócito/fisiologia , Endotélio Vascular/fisiologia , Epitélio/fisiologia , Humanos , Inflamação/sangue , Molécula 1 de Adesão Intercelular/sangue , Molécula 1 de Adesão Intercelular/química , Camundongos , Metástase Neoplásica , Células-Tronco Neoplásicas/citologia , Fosforilação , Prognóstico , Processamento de Proteína Pós-Traducional , Nicho de Células-Tronco
20.
Am J Pathol ; 190(4): 874-885, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035057

RESUMO

Intercellular adhesion molecule-1 (ICAM-1) is up-regulated during inflammation by several cell types. ICAM-1 is best known for its role in mediating leukocyte adhesion to endothelial cells and guiding leukocytes across the vascular wall. Recently, macrophages have been shown to express ICAM-1, however, their role in macrophage function is unclear. We found that ICAM-1 expression was induced during inflammatory macrophage polarization and high numbers of ICAM-1-expressing macrophages were noted in inflamed colon tissue in a murine colitis model and in human inflammatory bowel disease. Because tissue macrophages play a critical role in removing apoptotic/necrotic cells in inflammation and injury, a process termed efferocytosis, it was examined whether ICAM-1 contributes to this process. Genetic deletion (ICAM-1 knockout mice) or siRNA-mediated knockdown of ICAM-1 in isolated murine and human macrophages significantly impaired apoptotic cell (AC) engulfment. Impairment in the engulfment of Jurkat T cells, neutrophils, and epithelial cells was confirmed ex vivo by inflammatory macrophages and in vivo by thioglycolate-recruited peritoneal macrophages. Decreased efferocytosis was also seen in vitro and in vivo with inhibition of ICAM-1 adhesive interactions, using a function blocking anti-ICAM-1 antibody. Mechanistically, it was found that ICAM-1 actively redistributes to cluster around engulfed ACs to facilitate macrophage-AC binding. Our findings define a new role for ICAM-1 in promoting macrophage efferocytosis, a critical process in the resolution of inflammation and restoration of tissue homeostasis.


Assuntos
Colo/imunologia , Inflamação/imunologia , Molécula 1 de Adesão Intercelular/fisiologia , Macrófagos/imunologia , Fagocitose , Animais , Apoptose , Adesão Celular , Colo/metabolismo , Colo/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA