Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 661: 219-227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38301460

RESUMO

Colloidal suspensions of anisotropic particles are ubiquitous in particle-based industries. Consequently, there is a need to quantify the effects of particle shape on equilibrium phases and kinetic state transitions, particularly at lower aspect ratios (L/D ≈ 1-10). We present a new, colloidal system comprised of hollow, octadecyl-coated silica rods with 40 nm diameter with controlled aspect ratio and thermoreversible short-range attractions. Rheology and dynamic light scattering measurements on suspensions of these hollow adhesive hard rods with nominal aspect ratio ≈3 suspended in tetradecane exhibit thermoreversible gelation without complicating effects of gravitational settling. Small angle neutron scattering measurements of the microstructure are analyzed to determine the effective strength of attraction in the form of Baxter sticky parameter. Quantitative agreement is found with simulation predictions of the thermoreversible gel transition as a function of volume fraction, further validating a universal state diagram and providing guidance for the effects of aspect ratio on gelation.

2.
J Chem Phys ; 158(5): 054907, 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36754789

RESUMO

A system undergoing sol-gel transition passes through a unique point, known as the critical gel state, where it forms the weakest space spanning percolated network. We investigate the nonlinear viscoelastic behavior of a colloidal dispersion at the critical gel state using large amplitude oscillatory shear rheology. The colloidal gel at the critical point is subjected to oscillatory shear flow with increasing strain amplitude at different frequencies. We observe that the first harmonic of the elastic and viscous moduli exhibits a monotonic decrease as the material undergoes a linear to nonlinear transition. We analyze the stress waveform across this transition and obtain the nonlinear moduli and viscosity as a function of frequency and strain amplitude. The analysis of the nonlinear moduli and viscosities suggests intracycle strain stiffening and intracycle shear thinning in the colloidal dispersion. Based on the insights obtained from the nonlinear analysis, we propose a potential scenario of the microstructural changes occurring in the nonlinear region. We also develop an integral model using the time-strain separable Kaye-Bernstein-Kearsley-Zapas constitutive equation with a power-law relaxation modulus and damping function obtained from experiments. The proposed model with a slight adjustment of the damping function inferred using a spectral method, compares well with experimental data at all frequencies.

3.
J Chem Phys ; 157(2): 024901, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35840369

RESUMO

We investigate the aging behavior in a well-studied model system comprised of a colloidal suspension of thermoreversible adhesive hard spheres (AHS) but thermally quenched below the gel transition to much larger depths than previously studied. The aging behavior in the model AHS system is monitored by small amplitude oscillatory shear rheology measurements conducted while rapidly quenching from the liquid state at 40 °C to a temperature below the gel temperature, and new, anomalous aging behaviors are observed. Shallow quenches lead to monotonic development of the elastic modulus with time, consistent with prior reports for the development of a homogeneous gel [Gordon et al., J. Rheol. 61, 23-34 (2017)]. However, for deeper quenches, a unique and new phenomenon is reported, namely, after an initial rise in the modulus, a reproducible drop in the modulus is observed, followed by a plateau in the modulus value. This drop can be gradual or sudden and the extent of the drop depends on the quench depth. After this drop in the modulus, AHS gel evolves toward a quench-path independent state over the experimental timescale. These effects of the extent of quenching on aging behavior are hypothesized to be a consequence of quenching into different underlying thermodynamic states of colloidal gels and the possible influence of the adhesive glass dynamical arrest for the deepest quenches. The research connects homogeneous gelation with heterogeneous gel formation due to phase separation and shows that the extent of quench can be used as an independent parameter to govern the rheological response of the arrested gel.

4.
J Phys Condens Matter ; 32(22): 224002, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32015220

RESUMO

In this work, we investigate the physical origin of ergodicity breaking in an aqueous colloidal dispersion of synthetic hectorite clay, LAPONITE®, by performing dissolution and rheological experiments with monovalent salt and tetrasodium pyrophosphate solution. We also study the effect of pH and nature of interface, nitrogen and paraffin oil on the same. Dissolution experiments carried out for dispersions with both the interfaces show similar results. However, for samples with a nitrogen interface, all the effects are observed to get expedited in time compared to a paraffin oil interface. When kept in contact with water, 1.5 wt.% and 2.8 wt.% colloidal dispersion at pH 10 swells at small ages, while it does not swell at large ages. The solution of tetrasodium pyrophosphate, interestingly, dissolves the entire colloidal dispersion sample with pH 10 irrespective of the concentration of clay. Experiments carried out on colloidal dispersions prepared in water having pH 13 demonstrate no effect of water as well as sodium pyrophosphate solution on the same suggesting a possibility of the presence of negative charge on edge at that pH. We believe that all the behaviors observed for samples at pH 10 can be explained by an attractive gel microstructure formed by edge-to-face contact. Furthermore, the absence of swelling in old colloidal dispersion at pH 10 and dissolution of the same by sodium pyrophosphate solution cannot be explained by merely repulsive interactions. This behavior suggests that attractive interactions originating from edge-to-face contact play an important role in causing ergodicity breaking in the colloidal dispersions at pH 10 at all the ages irrespective of the clay concentration. We further substantiate the presence of a fractal network structure formed by interparticle edge-face association using rheological tools and cryo-TEM imaging. We also conduct a comprehensive study of the effect of tetrasodium pyrophosphate on the sol-gel transition of LAPONITE® dispersion.

5.
Langmuir ; 34(44): 13079-13103, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30180583

RESUMO

Synthetic hectorite clay Laponite RD/XLG is composed of disk-shaped nanoparticles that acquire dissimilar charges when suspended in an aqueous medium. Owing to their property to spontaneously self-assemble, Laponite is used as a rheology modifier in a variety of commercial water-based products. In particular, an aqueous dispersion of Laponite undergoes a liquid-to-solid transition at about 1 vol % concentration. The evolution of the physical properties as the dispersion transforms to the solid state is reminiscent of physical aging in molecular as well as colloidal glasses. The corresponding soft glassy dynamics of an aqueous Laponite dispersion, including the rheological behavior, has been extensively studied in the literature. In this feature article, we take an overview of recent advances in understanding soft glassy dynamics and various efforts taken to understand the peculiar rheological behavior. Furthermore, the continuously developing microstructure that is responsible for the eventual formation of a soft solid state that supports its own weight against gravity has also been a topic of intense debate and discussion. In particularly, extensive experimental and theoretical studies lead to two types of microstructures for this system: an attractive gel-like or a repulsive glass-like structure. We carefully examine and critically analyze the literature and propose a state (phase) diagram that suggests an aqueous Laponite dispersion to be present in an attractive gel state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA