Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(15): 4298-4301, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090918

RESUMO

Surface Nanoscale Axial Photonics (SNAP) is a promising technological platform for creating novel optical devices such as compact high-Q tunable delay lines, signal processors, and optical comb generators. For this purpose, the development of simple and reliable methods for the accurate introduction of a nanometer-scale variation of the optical fiber surface is desirable. Here, we present an easy-to-implement technique for the introduction of nanoscale variations of the effective optical fiber radius by annealing with a heated metal wire. Using the proposed method, we introduce modifications of the fiber effective radius with accuracy better than 0.1 nm without post-processing, making the proposed approach the simplest alternative to the previously developed SNAP fabrication techniques.

2.
Light Sci Appl ; 12(1): 197, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37596274

RESUMO

High Q-factor monolithic optical microresonators found numerous applications in classical and quantum optical signal processing, microwave photonics, ultraprecise sensing, as well as fundamental optical and physical sciences. However, due to the solid structure of these microresonators, attaining the free spectral range tunability of most of them, critical for several of these applications, was, so far, unfeasible. To address this problem, here we experimentally demonstrate that the side-coupling of coplanar bent optical fibres can induce a high Q-factor whispering gallery mode optical microresonator. By changing the curvature radius of fibres from the centimetre order to the millimetre order, we demonstrate fully mechanically reconfigurable optical microresonators with dimensions varying from the millimetre order to 100-micron order and free spectral range varying from a picometre to ten picometre order. The developed theory describes the formation of the discovered microresonators and their major properties in a reasonable agreement with the experimental data. The new microresonators may find applications in cavity QED, microresonator optomechanics, frequency comb generation with tuneable repetition rate, tuneable lasing, and tuneable processing and delay of optical pulses.

3.
Opt Lett ; 43(23): 5729-5732, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30499979

RESUMO

We demonstrated the subangstrom precise correction of surface nanoscale axial photonics (SNAP) micro-resonators by the femtosecond (fs) laser postprocessing technique for the first time. The internal stress can be induced by fs laser inscriptions in the fiber, causing nanoscale effective radius variation (ERV). However, the obtained ultraprecise fabrication usually undergoes multiple tries. Here, we propose a novel postprocessing technique based on the fs laser that significantly reduces the ERV errors and improves the fabrication precision without iterative corrections. The postexposure process is achieved at the original exposure locations using lower pulse energy than that in the initial fabrication process. The results show that the ERV is nearly proportional to the pulse energy of the postexposure process. The slope of the ERV versus the pulse energy is 0.07 Å/nJ. The maximum of the postprocessed ERV can reach 8.0 Å. The repeatability was experimentally verified by accomplishing the correction on three SNAP microresonators with the precision of 0.75 Å. The developed fabrication technique with fs laser enables SNAP microresonators with new breakthrough applications for optomechanics and filters.

4.
Opt Express ; 11(4): 381-91, 2003 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-19461745

RESUMO

The simple method for modeling of circuits of weakly coupled lossy resonant cavities, previously developed in quantum mechanics, is generalized to enable calculation of the transmission and reflection amplitudes and group delay of light. Our result is the generalized Breit-Wigner formula, which has a clear physical meaning and is convenient for fast modeling and optimization of complex resonant cavity circuits and, in particular, superstructure gratings in a way similar to modeling and optimization of electric circuits. As examples, we find the conditions when a finite linear chain of cavities and a linear chain with adjacent cavities act as bandpass and double bandpass filters, and the condition for a Y-shaped structure to act as a bandpass 50/50 light splitter. The group delay dependencies of the considered structures are also investigated.

5.
Opt Express ; 10(7): 332-40, 2002 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-19436364

RESUMO

The theory of the group delay ripple generated by apodized chirped fiber gratings is developed using the analogy between noisy gratings and superstructure Bragg gratings. It predicts the fundamental cutoff of the high frequency spatial noise of grating parameters in excellent agreement with the experimental data. We find simple general relationship between the high-frequency ripple in the grating period and the group delay ripple. In particular, we show that the amplitude of a single-frequency group delay ripple component changes with grating period chirp, C, as 3/ 2 C and is proportional to the grating index modulation, while its phase shift and period changes as 1 C .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA