Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37420994

RESUMO

Microphysiological systems (MPS) are an emerging technology for next-generation drug screening in non-clinical tests. Microphysiological systems are microfluidic devices that reconstitute the physiological functions of a human organ using a three-dimensional in vivo-mimicking microenvironment. In the future, MPSs are expected to reduce the number of animal experiments, improve prediction methods for drug efficacy in clinical settings, and reduce the costs of drug discovery. However, drug adsorption onto the polymers used in an MPS is a critical issue for assessment because it changes the concentration of the drug. Polydimethylsiloxane (PDMS), a basic material used for the fabrication of MPS, strongly adsorbs hydrophobic drugs. As a substitute for PDMS, cyclo-olefin polymer (COP) has emerged as an attractive material for low-adsorption MPS. However, it has difficulty bonding with different materials and, therefore, is not commonly used. In this study, we assessed the drug adsorption properties of each material constituting an MPS and subsequent changes in drug toxicity for the development of a low-adsorption MPSs using COP. The hydrophobic drug cyclosporine A showed an affinity for PDMS and induced lower cytotoxicity in PDMS-MPS but not in COP-MPS, whereas adhesive tapes used for bonding adsorbed a significant quantity of drugs, lowering their availability, and was cytotoxic. Therefore, easily-adsorbed hydrophobic drugs and bonding materials having lower cytotoxicity should be used with a low-adsorption polymer such as COP.

2.
Biol Pharm Bull ; 45(9): 1246-1253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36047192

RESUMO

Microfluidic devices are attracting attention for their ability to provide a biomimetic microenvironment wherein cells are arranged in a particular pattern and provided fluidic and mechanical forces. In this study, we evaluated drug transport across Caco-2 cell layers in microfluidic devices and investigated the effects of fluid flow on drug transport and metabolism. We designed a microfluidic device that comprises two blocks of polydimethylsiloxane and a sandwiched polyethylene terephthalate membrane with pores 3.0 µm in diameter. When cultured in a dynamic fluid environment, Caco-2 cells were multilayered and developed microvilli on the surface as compared with a static environment. Drugs with higher lipophilicity exhibited higher permeability across the Caco-2 layers, as well as in the conventional method using Transwells, and the fluidic conditions had little effect on permeability. In the Caco-2 cell layers cultured in Transwells and microfluidic devices, the basal-to-apical transport of rhodamine 123, a substrate of P-glycoprotein, was greater than the apical-to-basal transport, and the presence of tariquidar, an inhibitor of P-glycoprotein, completely diminished asymmetric transport. Furthermore, fluidic conditions promoted the metabolism of temocapril by carboxylesterases. On the other hand, we showed that fluidic conditions have little effect on gene expression of several transporters and metabolic enzymes. These results provide useful information regarding the application of microfluidic devices in drug transport and metabolism studies.


Assuntos
Intestinos , Dispositivos Lab-On-A-Chip , Subfamília B de Transportador de Cassetes de Ligação de ATP , Células CACO-2 , Humanos , Absorção Intestinal , Permeabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA