Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arthritis Res Ther ; 26(1): 11, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167214

RESUMO

BACKGROUND: The biological function of Acanthopanax sessiliflorus Harm (ASH) has been investigated on various diseases; however, the effects of ASH on arthritis have not been investigated so far. This study investigates the effects of ASH on rheumatoid arthritis (RA). METHODS: Supercritical carbon dioxide (CO2) was used for ASH extract preparation, and its primary components, pimaric and kaurenoic acids, were identified using gas chromatography-mass spectrometer (GC-MS). Collagenase-induced arthritis (CIA) was used as the RA model, and primary cultures of articular chondrocytes were used to examine the inhibitory effects of ASH extract on arthritis in three synovial joints: ankle, sole, and knee. RESULTS: Pimaric and kaurenoic acids attenuated pro-inflammatory cytokine-mediated increase in the catabolic factors and retrieved pro-inflammatory cytokine-mediated decrease in related anabolic factors in vitro; however, they did not affect pro-inflammatory cytokine (IL-1ß, TNF-α, and IL-6)-mediated cytotoxicity. ASH effectively inhibited cartilage degradation in the knee, ankle, and toe in the CIA model and decreased pannus development in the knee. Immunohistochemistry demonstrated that ASH mostly inhibited the IL-6-mediated matrix metalloproteinase. Gene Ontology and pathway studies bridge major gaps in the literature and provide insights into the pathophysiology and in-depth mechanisms of RA-like joint degeneration. CONCLUSIONS: To the best of our knowledge, this is the first study to conduct extensive research on the efficacy of ASH extract in inhibiting the pathogenesis of RA. However, additional animal models and clinical studies are required to validate this hypothesis.


Assuntos
Artrite Experimental , Artrite Reumatoide , Eleutherococcus , Camundongos , Animais , Artrite Experimental/tratamento farmacológico , Artrite Experimental/patologia , Eleutherococcus/metabolismo , Interleucina-6 , Artrite Reumatoide/metabolismo , Modelos Animais de Doenças , Citocinas/metabolismo
2.
Antioxidants (Basel) ; 12(3)2023 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-36978951

RESUMO

Emerging nanoscience allows us to take advantage of the improved evolutionary components and apply today's advanced characterization and fabrication techniques to solve environmental and biological problems. Despite the promise that nanotechnology will improve our lives, the potential risks of technology remain largely uncertain. The lack of information on bio-impacts and the absence of consistent standards are the limitations of using metal-based nanoparticles (mNPs) for existing applications. To analyze the role played by the mNPs physicochemical characteristics and tactics to protect live beings, the field of nanotoxicology nowadays is focused on collecting and analyzing data from in vitro and in vivo investigations. The degree of reactive oxygen species (ROS) and oxidative stress caused by material nanoparticles (NPs) depends on many factors, such as size, shape, chemical composition, etc. These characteristics enable NPs to enter cells and interact with biological macromolecules and cell organelles, resulting in oxidative damage, an inflammatory response, the development of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. This report explored the mechanisms and cellular signaling cascades of mNPs-induced oxidative stress and the relevant health consequences.

3.
Anim Biotechnol ; 34(5): 1763-1775, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35311492

RESUMO

Probiotics are used in pigs as nutritional supplements to improve health and induce the development of muscle and adipose tissue for enhancing growth performance and harvesting quality meat. In this study, we investigated the effects of Bacillus-based probiotic supplementation on the physiological and biochemical changes in Jeju native pigs (JNPs), including growth performance, backfat layers, blood parameters, serum IgG levels, myogenic and adipogenic markers, and expression of inflammatory markers. Average daily gain and feed efficiency were higher in the Bacillus diet group than in the basal diet group, while backfat thickness was lower in the Bacillus diet group than in the basal diet group. Blood biochemical parameters and hematological profiles were not altered significantly by Bacillus-based probiotic supplementation. Serum IgG concentration increased in the Bacillus diet group compared to the basal diet group. The Bacillus diet group showed increased adipogenic and myogenic markers expression in the longissimus dorsi muscle and adipose tissues. Overall, the data suggest that the Bacillus-based probiotics-supplemented diet regulates myogenesis and adipogenesis in JNPs and improves growth performance. We postulate that this may be due to the changes in the gut microbiota of pigs due to probiotic supplementation.


Assuntos
Bacillus , Animais , Suínos , Adipogenia , Suplementos Nutricionais , Dieta/veterinária , Imunoglobulina G , Ração Animal/análise
4.
Biomed Pharmacother ; 157: 114067, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36481405

RESUMO

Holistic healthcare practitioners have now started to focus on specific traditional medicinal mushrooms to treat rheumatoid arthritis (RA). Ganoderma lucidum (GL) is one of the oldest mushrooms that have been used in ancient Chinese medicine to treat inflammatory ailments, including autoimmune diseases such as RA. Spores from this mushroom have specific effects on immunomodulation, aging, and cancer. However, the effect of G. lucidum spores (GLS) on arthritis remains unclear. Therefore, we investigated the effects of GLS oil in a collagen-induced rheumatoid arthritis (CIA) model. Metabolomics analysis revealed that GLS oil contains ten acids, of which oleic acid (52.12%) and linoleic acid (16.77%) predominated. The GLS oil-treated CIA mice had a significantly lower clinical score (p = 0.0384) for RA than the control CIA mice. Moreover, GLS oil reduced CIA-induced cartilage degeneration and synovial membrane inflammation in the knee. The GLS oil group showed significantly reduced knee eosinophilia (p = 0.0056). Immunostaining of neutrophils revealed that neutrophils infiltrated the CIA group; however, infiltrated neutrophils were significantly reduced in the GLS oil group in both the knees (p = 0.0006) and ankles (p = 0.0023). GLS oil treatment substantially suppressed LPS- or TNF-α-induced IL-6 mRNA expression in primary cultured chondrocytes. IL-6 immunohistochemistry results showed that the protein levels of IL-6 were attenuated in the GLS oil group compared to the CIA group. These findings suggest that GLS oil may be useful for the development of RA drugs. Further clinical research is required to identify significant improvements.


Assuntos
Artrite Experimental , Artrite Reumatoide , Reishi , Camundongos , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Interleucina-6/farmacologia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/tratamento farmacológico , Membrana Sinovial , Modelos Animais de Doenças
5.
Life (Basel) ; 12(11)2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36431028

RESUMO

For more than a decade, next-generation sequencing (NGS) has been emerging as the mainstay of agrigenomics research. High-throughput technologies have made it feasible to facilitate research at the scale and cost required for using this data in livestock research. Scale frameworks of sequencing for agricultural and livestock improvement, management, and conservation are partly attributable to innovative informatics methodologies and advancements in sequencing practices. Genome-wide sequence-based investigations are often conducted worldwide, and several databases have been created to discover the connections between worldwide scientific accomplishments. Such studies are beginning to provide revolutionary insights into a new era of genomic prediction and selection capabilities of various domesticated livestock species. In this concise review, we provide selected examples of the current state of sequencing methods, many of which are already being used in animal genomic studies, and summarize the state of the positive attributes of genome-based research for cattle (Bos taurus), sheep (Ovis aries), pigs (Sus scrofa domesticus), horses (Equus caballus), chickens (Gallus gallus domesticus), and ducks (Anas platyrhyncos). This review also emphasizes the advantageous features of sequencing technologies in monitoring and detecting infectious zoonotic diseases. In the coming years, the continued advancement of sequencing technologies in livestock agrigenomics will significantly influence the sustained momentum toward regulatory approaches that encourage innovation to ensure continued access to a safe, abundant, and affordable food supplies for future generations.

6.
Comput Struct Biotechnol J ; 20: 5378-5392, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212529

RESUMO

Increasing globalization, agricultural intensification, urbanization, and climatic changes have resulted in a significant recent increase in emerging infectious zoonotic diseases. Zoonotic diseases are becoming more common, so innovative, effective, and integrative research is required to better understand their transmission, ecological implications, and dynamics at wildlife-human interfaces. High-throughput sequencing (HTS) methodologies have enormous potential for unraveling these contingencies and improving our understanding, but they are only now beginning to be realized in livestock research. This study investigates the current state of use of sequencing technologies in the detection of livestock pathogens such as bovine, dogs (Canis lupus familiaris), sheep (Ovis aries), pigs (Sus scrofa), horses (Equus caballus), chicken (Gallus gallus domesticus), and ducks (Anatidae) as well as how it can improve the monitoring and detection of zoonotic infections. We also described several high-throughput sequencing approaches for improved detection of known, unknown, and emerging infectious agents, resulting in better infectious disease diagnosis, as well as surveillance of zoonotic infectious diseases. In the coming years, the continued advancement of sequencing technologies will improve livestock research and hasten the development of various new genomic and technological studies on farm animals.

7.
Pharmaceuticals (Basel) ; 14(8)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34451873

RESUMO

Achyranthes japonica Nakai root (AJNR) is used to treat osteoarthritis (OA) and rheumatoid arthritis (RA) owing to its anti-inflammatory and antioxidant effects. This study investigated the inhibitory effects of AJNR on arthritis. AJNR was extracted using supercritical carbon dioxide (CO2), and its main compounds, pimaric and kaurenoic acid, were identified. ANJR's inhibitory effects against arthritis were evaluated using primary cultures of articular chondrocytes and two in vivo arthritis models: destabilization of the medial meniscus (DMM) as an OA model, and collagenase-induced arthritis (CIA) as an RA model. AJNR did not affect pro-inflammatory cytokine (IL-1ß, TNF-α, IL-6)-mediated cytotoxicity, but attenuated pro-inflammatory cytokine-mediated increases in catabolic factors, and recovered pro-inflammatory cytokine-mediated decreases in related anabolic factors related to in vitro. The effect of AJNR is particularly specific to IL-6-mediated catabolic or anabolic alteration. In a DMM model, AJNR decreased cartilage erosion, subchondral plate thickness, osteophyte size, and osteophyte maturity. In a CIA model, AJNR effectively inhibited cartilage degeneration and synovium inflammation in either the ankle or knee and reduced pannus formation in both the knee and ankle. Immunohistochemistry analysis revealed that AJNR mainly acted via the inhibitory effects of IL-6-mediated matrix metalloproteinase-3 and -13 in both arthritis models. Therefore, AJNR is a potential therapeutic agent for relieving arthritis symptoms.

8.
Pharmaceuticals (Basel) ; 13(12)2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33261216

RESUMO

Estrogen-related receptors (ERRs) are the first identified orphan nuclear receptors. The ERR family consists of ERRα, ERRß, and ERRγ, regulating diverse isoform-specific functions. We have reported the importance of ERRγ in osteoarthritis (OA) pathogenesis. However, therapeutic approaches with ERRγ against OA associated with inflammatory mechanisms remain limited. Herein, we examined the therapeutic potential of a small-molecule ERRγ inverse agonist, GSK5182 (4-hydroxytamoxifen analog), in OA, to assess the relationship between ERRγ expression and pro-inflammatory cytokines in mouse articular chondrocyte cultures. ERRγ expression increased following chondrocyte exposure to various pro-inflammatory cytokines, including interleukin (IL)-1ß, IL-6, and tumor necrosis factor (TNF)-α. Pro-inflammatory cytokines dose-dependently increased ERRγ protein levels. In mouse articular chondrocytes, adenovirus-mediated ERRγ overexpression upregulated matrix metalloproteinase (MMP)-3 and MMP-13, which participate in cartilage destruction during OA. Adenovirus-mediated ERRγ overexpression in mouse knee joints or ERRγ transgenic mice resulted in OA. In mouse joint tissues, genetic ablation of Esrrg obscured experimental OA. These results indicate that ERRγ is involved in OA pathogenesis. In mouse articular chondrocytes, GSK5182 inhibited pro-inflammatory cytokine-induced catabolic factors. Consistent with the in vitro results, GSK5182 significantly reduced cartilage degeneration in ERRγ-overexpressing mice administered intra-articular Ad-Esrrg. Overall, the ERRγ inverse agonist GSK5182 represents a promising therapeutic small molecule for OA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA