Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(10): e0292554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37819930

RESUMO

Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state with molecular profiles. This inability to integrate a live-cell phenotype-such as invasiveness, cell:cell interactions, and changes in spatial positioning-with multi-omic data creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomic and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live cells. This protocol requires cells expressing a photoconvertible fluorescent protein and employs live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulations for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live cell phenotypes and multi-omic heterogeneity within normal and diseased cellular populations.


Assuntos
Genômica , Multiômica , Citometria de Fluxo/métodos , Fenótipo , Comunicação Celular
2.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909653

RESUMO

Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state, with molecular profiles. This inability to integrate a historical live-cell phenotype, such as invasiveness, cell:cell interactions, and changes in spatial positioning, with multi-omic data, creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomics and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live-cells. We begin with cells stably expressing a photoconvertible fluorescent protein and employ live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulation for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live-cell phenotype and multi-omic heterogeneity within normal and diseased cellular populations.

3.
Sci Adv ; 6(30): eaaz6197, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832657

RESUMO

Tumor heterogeneity drives disease progression, treatment resistance, and patient relapse, yet remains largely underexplored in invasion and metastasis. Here, we investigated heterogeneity within collective cancer invasion by integrating DNA methylation and gene expression analysis in rare purified lung cancer leader and follower cells. Our results showed global DNA methylation rewiring in leader cells and revealed the filopodial motor MYO10 as a critical gene at the intersection of epigenetic heterogeneity and three-dimensional (3D) collective invasion. We further identified JAG1 signaling as a previously unknown upstream activator of MYO10 expression in leader cells. Using live-cell imaging, we found that MYO10 drives filopodial persistence necessary for micropatterning extracellular fibronectin into linear tracks at the edge of 3D collective invasion exclusively in leaders. Our data fit a model where epigenetic heterogeneity and JAG1 signaling jointly drive collective cancer invasion through MYO10 up-regulation in epigenetically permissive leader cells, which induces filopodia dynamics necessary for linearized fibronectin micropatterning.

4.
Cell Rep ; 28(8): 2037-2047.e4, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31433981

RESUMO

Unlike the adult mammalian retina, Müller glia (MG) in the adult zebrafish retina are able to dedifferentiate into a "stem cell"-like state and give rise to multipotent progenitor cells upon retinal damage. We show that miR-216a is downregulated in MG after constant intense light lesioning and that miR-216a suppression is necessary and sufficient for MG dedifferentiation and proliferation during retina regeneration. miR-216a targets the H3K79 methyltransferase Dot1l, which is upregulated in proliferating MG after retinal damage. Loss-of-function experiments show that Dot1l is necessary for MG reprogramming and mediates MG proliferation downstream of miR-216a. We further demonstrate that miR-216a and Dot1l regulate MG-mediated retina regeneration through canonical Wnt signaling. This article reports a regulatory mechanism upstream of Wnt signaling during retina regeneration and provides potential targets for enhancing regeneration in the adult mammalian retina.


Assuntos
Reprogramação Celular , Células Ependimogliais/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , MicroRNAs/metabolismo , Regeneração Nervosa/fisiologia , Retina/fisiologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Sequência de Bases , Desdiferenciação Celular , Proliferação de Células , Células Ependimogliais/citologia , Luz , MicroRNAs/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Via de Sinalização Wnt
5.
Mol Vis ; 20: 1075-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25324680

RESUMO

Zebrafish are capable of robust and spontaneous regeneration of injured retina. Constant intense light exposure to adult albino zebrafish specifically causes apoptosis of rod and cone photoreceptor cells and is an excellent model to study the molecular mechanisms underlying photoreceptor regeneration. However, this paradigm has only been applied to lesion zebrafish of the nonpigmented albino genetic background, which precludes the use of numerous transgenic reporter lines that are widely used to study regeneration. Here, we explored the effectiveness of constant intense light exposure in causing photoreceptor apoptosis and stimulating regeneration in normally pigmented zebrafish retinas. We show that constant intense light exposure causes widespread photoreceptor damage in the dorsal-central retinas of pigmented zebrafish. Photoreceptor loss triggers dedifferentiation and proliferation of Müller glia as well as progenitor cell proliferation. We also demonstrate that the timeline of regeneration response is comparable between the albino and the pigmented retinas.


Assuntos
Regeneração/efeitos da radiação , Retina/lesões , Peixe-Zebra/fisiologia , Albinismo Ocular/patologia , Albinismo Ocular/fisiopatologia , Albinismo Ocular/radioterapia , Animais , Animais Geneticamente Modificados , Apoptose/efeitos da radiação , Desdiferenciação Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Modelos Animais de Doenças , Células Ependimogliais/patologia , Células Ependimogliais/fisiologia , Células Ependimogliais/efeitos da radiação , Proteínas de Fluorescência Verde/metabolismo , Luz , Células-Tronco Neurais/patologia , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/efeitos da radiação , Células Fotorreceptoras de Vertebrados/patologia , Células Fotorreceptoras de Vertebrados/fisiologia , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Proteínas Recombinantes/metabolismo , Regeneração/fisiologia , Retina/fisiopatologia , Retina/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA