Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 252: 109949, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636726

RESUMO

Psychedelic compounds have potentially rapid, long-lasting anxiolytic, antidepressive and anti-inflammatory effects. We investigated whether the psychedelic compound (R)-2,5-dimethoxy-4-iodoamphetamine [(R)-DOI], a selective 5-HT2A receptor partial agonist, decreases stress-related behavior in male mice exposed to repeated social aggression. Additionally, we explored the likelihood that these behavioral changes are related to anti-inflammatory properties of [(R)-DOI]. Animals were subjected to the Stress Alternatives Model (SAM), an escapable social stress paradigm in which animals develop reactive coping strategies - remaining in the SAM arena (Stay) with a social aggressor, or dynamically initiated stress coping strategies that involve utilizing the escape holes (Escape) to avoid aggression. Mice expressing these behavioral phenotypes display behaviors like those in other social aggression models that separate animals into stress-vulnerable (as for Stay) or stress-resilient (as for Escape) groups, which have been shown to have distinct inflammatory responses to social stress. These results show that Stay animals have heightened cytokine gene expression, and both Stay and Escape mice exhibit plasma and neural concentrations of the inflammatory cytokine tumor necrosis factor-α (TNFα) compared to unstressed control mice. Additionally, these results suggest that a single administration of (R)-DOI to Stay animals in low doses, can increase stress coping strategies such as increasing attention to the escape route, promoting escape behavior, and reducing freezing during socially aggressive interaction in the SAM. Lower single doses of (R)-DOI, in addition to shifting behavior to suggest anxiolytic effects, also concomitantly reduce plasma and limbic brain levels of the inflammatory cytokine TNFα.


Assuntos
Adaptação Psicológica , Agressão , Anfetaminas , Alucinógenos , Estresse Psicológico , Animais , Masculino , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Alucinógenos/administração & dosagem , Alucinógenos/farmacologia , Adaptação Psicológica/efeitos dos fármacos , Adaptação Psicológica/fisiologia , Camundongos , Agressão/efeitos dos fármacos , Agressão/fisiologia , Anfetaminas/farmacologia , Anfetaminas/administração & dosagem , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Agonistas do Receptor 5-HT2 de Serotonina/administração & dosagem , Reação de Fuga/efeitos dos fármacos , Capacidades de Enfrentamento
2.
Front Behav Neurosci ; 17: 1148292, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064300

RESUMO

Corticotropin-releasing factor (CRF) is essential for coordinating endocrine and neural responses to stress, frequently facilitated by vasopressin (AVP). Previous work has linked CRF hypersecretion, binding site changes, and dysfunctional serotonergic transmission with anxiety and affective disorders, including clinical depression. Crucially, CRF can alter serotonergic activity. In the dorsal raphé nucleus and serotonin (5-HT) terminal regions, CRF effects can be stimulatory or inhibitory, depending on the dose, site, and receptor type activated. Prior stress alters CRF neurotransmission and CRF-mediated behaviors. Lateral, medial, and ventral subdivisions of the central nucleus of the amygdala (CeA) produce CRF and coordinate stress responsiveness. The purpose of these experiments was to determine the effect of intracerebroventricular (icv) administration of CRF and AVP on extracellular 5-HT as an index of 5-HT release in the CeA, using in vivo microdialysis in freely moving rats and high performance liquid chromatography (HPLC) analysis. We also examined the effect of prior stress (1 h restraint, 24 h prior) on CRF- and AVP-mediated release of 5-HT within the CeA. Our results show that icv CRF infusion in unstressed animals had no effect on 5-HT release in the CeA. Conversely, in rats with prior stress, CRF caused a profound dose-dependent decrease in 5-HT release within the CeA. This effect was long-lasting (240 min) and was mimicked by CRF plus AVP infusion without stress. Thus, prior stress and AVP functionally alter CRF-mediated neurotransmission and sensitize CRF-induced inhibition of 5-HT release, suggesting that this is a potential mechanism underlying stress-induced affective reactivity in humans.

3.
Behav Brain Res ; 440: 114258, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36521572

RESUMO

Social decision-making is critically influenced by neurocircuitries that regulate stress responsiveness. Adaptive choices, therefore, are altered by stress-related neuromodulatory peptide systems, such as corticotropin releasing factor (CRF). Experimental designs that take advantage of ecologically salient fear-inducing stimuli allow for revelation of neural mechanisms that regulate the balance between pro- and anti-stress responsiveness. To accomplish this, we developed a social stress and conditioning protocol, the Stress Alternatives Model (SAM), that utilizes a simple dichotomous choice, and produces distinctive behavioral phenotypes (Escape or Stay). The experiments involve repeated social aggression, a potent unconditioned stimulus (US), from a novel larger conspecific (a 3X larger Rainbow trout). Prior to the social interaction, the smaller test fish is presented with an auditory conditioning stimulus (water off = CS). During the social aggression, an escape route is available, but is only large enough for the smaller test animal. Surprisingly, although the new aggressor provides vigorous attacks each day, only 50% of the test fish choose Escape. Stay fish, treated with the CRF1 antagonist antalarmin, a potent anxiolytic drug, on day 4, promotes Escape behavior for the last 4 days of the SAM protocol. The results suggest that the decision to Escape, required a reduction in stress reactivity. The Stay fish that chose Escape following anxiolytic treatment, learned how to use the escape route prior to stress reduction, as the Escape latency in these fish was significantly faster than first time escapers. In Escape fish, the use of the escape route is learned over several days, reducing the Escape latency over time in the SAM. Fear conditioning (water off + aggression) resulted in elevated hippocampal (DL) Bdnf mRNA levels, with coincident reduction in the AMPA receptor subunit Glua1 expression, a result that is reversed following a one-time treatment (during SAM aggression on day 4) with the anxiolytic CRF1 receptor antagonist antalarmin.


Assuntos
Ansiolíticos , Animais , Ansiolíticos/farmacologia , Hormônio Liberador da Corticotropina/metabolismo , Aprendizagem , Medo/fisiologia , Receptores de Hormônio Liberador da Corticotropina , Expressão Gênica
4.
Neuropharmacology ; 215: 109168, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724928

RESUMO

Fear-associated memories and behavior are often expressed in contexts/environments distinctively different from those in which they are created. This generalization process contributes to psychological disorders, particularly PTSD. Stress-related neurocircuits in the basolateral amygdala (BLA) receive inputs from hypothalamic orexin (Orx) neurons, which mediate neuronal activity by targeting orexin 1 (Orx1R) and orexin 2 (Orx2R) receptors via opposing functions. In BLA, inhibition of Orx1R or activation of Orx2R ameliorate stress responsiveness and behavior. We discovered that most Orx1R+ cells also express CamKIIα, while a majority of Orx2R+ cells are colocalized with GAD67. Further, Orx1R gene Hcrtr1 expression was positively correlated, and Orx2R gene Hcrtr2 expression was negatively correlated, with freezing in a phenotype-dependent fashion (Escape vs Stay) in the Stress Alternatives Model (SAM). The SAM consists of 4-days of social interaction between test mice and novel larger aggressors. Exits positioned at opposite ends of the SAM oval arena provide opportunities to actively avoid aggression. By Day 2, mice commit to behavioral phenotypes: Escape or Stay. Pharmacologically manipulating Orx receptor activity in the BLA, before Day 3 of the SAM, was followed with standard tests of anxiety: Open Field (OF) and Elevated Plus Maze (EPM). In Stay mice, freezing in response to social conflict and locomotion during SAM interaction (not home cage locomotion) were generalized to OF, and blocked by intra-BLA Orx1R antagonism, but not Orx2R antagonism. Moreover, patterns of social avoidance for Escape and Stay mice were recapitulated in OF, with generalization mediated by Orx1R and Orx2R antagonism, plus Orx2R stimulation.


Assuntos
Aprendizagem da Esquiva , Complexo Nuclear Basolateral da Amígdala , Receptores de Orexina , Comportamento Social , Sequência de Aminoácidos , Animais , Aprendizagem da Esquiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Camundongos , Receptores de Orexina/fisiologia , Orexinas , Fragmentos de Peptídeos , Tripsina
5.
Biol Psychiatry ; 91(9): 841-852, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-35279280

RESUMO

BACKGROUND: Stress produces differential behavioral responses through select molecular modifications to specific neurocircuitry elements. The orexin (Orx) system targets key components of this neurocircuitry in the basolateral amygdala (BLA). METHODS: We assessed the contribution of intra-BLA Orx1 receptors (Orx1Rs) in the expression of stress-induced phenotypes of mice. Using the Stress Alternatives Model, a social stress paradigm that produces two behavioral phenotypes, we characterized the role of intra-BLA Orx1R using acute pharmacological inhibition (SB-674042) and genetic knockdown (AAV-U6-Orx1R-shRNA) strategies. RESULTS: In the BLA, we observed that Orx1R (Hcrtr1) messenger RNA is predominantly expressed in CamKIIα+ glutamatergic neurons and rarely in GABAergic (gamma-aminobutyric acidergic) cells. While there is a slight overlap in Hcrtr1 and Orx2 receptor (Hcrtr2) messenger RNA expression in the BLA, we find that these receptors are most often expressed in separate cells. Antagonism of intra-BLA Orx1R after phenotype formation shifted behavioral expression from stress-sensitive (Stay) to stress-resilient (Escape) responses, an effect that was mimicked by genetic knockdown. Acute inhibition of Orx1R in the BLA also reduced contextual and cued fear freezing responses in Stay animals. This phenotype-specific behavioral change was accompanied by biased molecular transcription favoring Hcrtr2 over Hcrtr1 and Mapk3 over Plcb1 cell signaling cascades and enhanced Bdnf messenger RNA. CONCLUSIONS: Functional reorganization of intra-BLA gene expression is produced by antagonism of Orx1R, which promotes elevated Hcrtr2, greater Mapk3, and increased Bdnf expression. Together, these results provide evidence for a receptor-driven mechanism that balances pro- and antistress responses within the BLA.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Receptores de Orexina , Animais , Ansiedade/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Camundongos , Receptores de Orexina/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
6.
Neurobiol Stress ; 14: 100328, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33997153

RESUMO

Social rank functions to facilitate coping responses to socially stressful situations and conditions. The evolution of social status appears to be inseparably connected to the evolution of stress. Stress, aggression, reward, and decision-making neurocircuitries overlap and interact to produce status-linked relationships, which are common among both male and female populations. Behavioral consequences stemming from social status and rank relationships are molded by aggressive interactions, which are inherently stressful. It seems likely that the balance of regulatory elements in pro- and anti-stress neurocircuitries results in rapid but brief stress responses that are advantageous to social dominance. These systems further produce, in coordination with reward and aggression circuitries, rapid adaptive responding during opportunities that arise to acquire food, mates, perch sites, territorial space, shelter and other resources. Rapid acquisition of resources and aggressive postures produces dominant individuals, who temporarily have distinct fitness advantages. For these reasons also, change in social status can occur rapidly. Social subordination results in slower and more chronic neural and endocrine reactions, a suite of unique defensive behaviors, and an increased propensity for anxious and depressive behavior and affect. These two behavioral phenotypes are but distinct ends of a spectrum, however, they may give us insights into the troubling mechanisms underlying the myriad of stress-related disorders to which they appear to be evolutionarily linked.

7.
eNeuro ; 8(2)2021.
Artigo em Inglês | MEDLINE | ID: mdl-33632812

RESUMO

We previously argued that the neuroscience community has a role in environmental conservation because protection of biodiversity and the specialized behavioral adaptions of animals is essential to understanding brain structure and function. Preserving biodiversity and the natural world is also linked to human mental health and broadens our insight on the origins of psychiatric disorders like stress, anxiety, and depression. The study of neuroscience has become a global scientific pursuit that involves thousands of researchers and has an economic impact in the billions of dollars. As a group of biomedical research scientists, neuroscientists have the knowledge base and public credibility to convincingly promote sustainable environmental actions and policies. Here, we outline several key areas in which we as a neuroscience academic community can participate to preserve a rich global biodiversity and confront the environmental crises that lie before us.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Humanos , Políticas
8.
Neurosci Biobehav Rev ; 124: 137-150, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33549740

RESUMO

The stress response in rodents and humans is exquisitely dependent on the environmental context. The interactive element of the environment is typically studied by creating laboratory models of stress-induced plasticity manifested in behavior or the underlying neuroendocrine mediators of the behavior. Here, we discuss three representative sets of studies where the role of the environment in mediating stress sensitivity or stress resilience is considered across varying windows of time. Collectively, these studies testify that environmental variation at an earlier time point modifies the relationship between stressor and stress response at a later stage. The metaplastic effects of the environment on the stress response remain possible across various endpoints, including behavior, neuroendocrine regulation, region-specific neural plasticity, and regulation of receptors. The timescale of such variation spans adulthood, across stages of life history and generational boundaries. Thus, environmental variables are powerful determinants of the observed diversity in stress response. The predominant role of the environment suggests that it is possible to promote stress resilience through purposeful modification of the environment.


Assuntos
Meio Ambiente , Plasticidade Neuronal , Estresse Psicológico
9.
Behav Processes ; 182: 104294, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33290833

RESUMO

Neural and endocrine responses provide quantitative measures that can be used for discriminating behavioral output analyses. Experimental design differences often make it difficult to compare results with respect to the mechanisms producing behavioral actions. We hypothesize that comparisons of distinctive behavioral paradigms or modification of social signals can aid in teasing apart the subtle differences in animal responses to social stress. Eyespots are a unique sympathetically activated sign stimulus of the lizard Anolis carolinensis that influence aggression and social dominance. Eyespot formation along with measurements of central and plasma monoamines enable comparison of paired male aggressive interactions with those provoked by a mirror image. The results suggest that experiments employing artificial application of sign stimuli in dyadic interactions amplify behavioral, neural and endocrine responses, and foreshorten behavioral interactions compared to those that develop among pairs naturally. While the use of mirrors to induce aggressive behavior produces simulated interactions that appear normal, some behavioral, neural, and endocrine responses are amplified in these experiments as well. In contrast, mirror image interactions also limit the level of certain behavioral and neuroendocrine responses. As true social communication does not occur during interaction with mirror images, rank relationships can never be established. Multiple experimental approaches, such as combining naturalistic social interactions with virtual exchanges and/or manipulation of sign stimuli, can often provide added depth to understanding the motivation, context, and mechanisms that produce specific behaviors. The addition of endocrine and neural measurements helps identify the contributions of specific behavioral elements to the social processes proceeding.


Assuntos
Agressão , Lagartos , Animais , Comportamento Animal , Masculino , Serotonina , Predomínio Social , Estresse Psicológico
10.
Brain Res ; 1731: 146085, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30590027

RESUMO

Hypothalmic orexin/hypocretin (Orx) neurons in the lateral and dorsomedial perifornical region (LH-DMH/PeF) innervate broadly throughout the brain, and receive similar inputs. This wide distribution, as well as two Orx peptides (OrxA and OrxB) and two Orx receptors (Orx1 and Orx2) allow for functionally related but distinctive behavioral outcomes, that include arousal, sleep-wake regulation, food seeking, metabolism, feeding, reward, addiction, and learning. These are all motivational functions, and tie the orexin systems to anxiety and depression as well. We present evidence, that for affective behavior, Orx1 and Orx2 receptors appear to have opposing functions. The majority of research on anxiety- and depression-related outcomes has focused on Orx1 receptors, which appear to have primarily anxiogenic and pro-depressive actions. Although there is significant research suggesting contrary findings, the primary potential for pharmacotherapies linked to the Orx1 receptor is via antagonists to block anxious and depressive behavior. Dual orexin receptor antagonists have been approved for treatment of sleep disorders, and are likely candidates for adaptation for affect disorder treatments. However, we present evidence here that demonstrates the Orx2 receptors are anxiolytic and antidepressive. Using a new experimental pre-clinical model of anxious and depressive behavior stimulated by social stress and decision-making that produces two stable behavioral phenotypes, Escape/Resilient and Stay/Susceptible, we tested the effects of intracerebroventricular injections of Orx2 agonist and antagonist drugs. Over ten behavioral measures, we have demonstrated that Orx2 agonists promote resilience, as well as anxiolytic and antidepressive behavior. In contrast, Orx2 antagonists or knockdown kindle anxious and pro-depressive behavior plus increase susceptibility. The results suggest that the Orx2 receptor may be a useful target for pharmacotherapies to treat anxiety and depression.


Assuntos
Ansiolíticos/administração & dosagem , Antidepressivos/administração & dosagem , Ansiedade/fisiopatologia , Tomada de Decisões/fisiologia , Depressão/fisiopatologia , Antagonistas dos Receptores de Orexina/administração & dosagem , Receptores de Orexina/fisiologia , Estresse Psicológico/fisiopatologia , Animais , Ansiedade/prevenção & controle , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Clássico/fisiologia , Tomada de Decisões/efeitos dos fármacos , Depressão/prevenção & controle , Medo/efeitos dos fármacos , Medo/fisiologia , Humanos , Receptores de Orexina/agonistas , Estresse Psicológico/prevenção & controle
11.
Neuropharmacology ; 143: 79-94, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30240784

RESUMO

Knockdown of orexin/hypocretin 2 receptor (Orx2) in the basolateral amygdala (BLA) affects anxious and depressive behavior. We use a new behavioral paradigm, the Stress Alternatives Model (SAM), designed to improve translational impact. The SAM induces social stress in adult male mice by aggression from larger mice, allowing for adaptive decision-making regarding escape. In this model, mice remain (Stay) in the oval SAM arena or escape from social aggression (Escape) via routes only large enough for the smaller mouse. We hypothesized intracerebroventricular (icv) stimulation of Orx2 receptors would be anxiolytic and antidepressive in SAM-related social behavior and the Social Interaction/Preference (SIP) test. Conversely, we predicted that icv antagonism of Orx2 receptors would promote anxious and depressive behavior in these same tests. Anxious behaviors such as freezing (both cued and conflict) and startle are exhibited more often in Stay compared with Escape phenotype mice. Time spent attentive to the escape route is more frequent in Escape mice. In Stay mice, stimulation of Orx2 receptors reduces fear conditioning, conflict freezing and startle, and promotes greater attention to the escape hole. This anxiolysis was accompanied by activation of a cluster of inhibitory neurons in the amygdala. A small percentage of those Stay mice also begin escaping; whereas Escape is reversed by the Orx2 antagonist. Escape mice were also Resilient, and Stay mice Susceptible to stress (SIP), with both conditions reversed by Orx2 antagonism or stimulation respectively. Together, these results suggest that the Orx2 receptor may be a useful potential target for anxiolytic or antidepressive therapeutics.


Assuntos
Ansiedade/induzido quimicamente , Depressão/induzido quimicamente , Antagonistas dos Receptores de Orexina/farmacologia , Receptores de Orexina/agonistas , Psicotrópicos/farmacologia , Resiliência Psicológica/efeitos dos fármacos , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Depressão/metabolismo , Depressão/patologia , Medo/efeitos dos fármacos , Medo/fisiologia , Reação de Congelamento Cataléptica/efeitos dos fármacos , Reação de Congelamento Cataléptica/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Receptores de Orexina/metabolismo , Orexinas/metabolismo , Reflexo de Sobressalto/efeitos dos fármacos , Reflexo de Sobressalto/fisiologia , Comportamento Social , Estresse Psicológico/induzido quimicamente , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Estresse Psicológico/patologia
12.
Front Neurosci ; 11: 515, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28966574

RESUMO

Socially stressful environments induce a phenotypic dichotomy of coping measures for populations in response to a dominant aggressor and given a route of egress. This submission- (Stay) or escape-oriented (Escape) dichotomy represents individual decision-making under the stressful influence of hostile social environments. We utilized the Stress-Alternatives Model (SAM) to explore behavioral factors which might predict behavioral phenotype in rainbow trout. The SAM is a compartmentalized tank, with smaller and larger trout separated by an opaque divider until social interaction, and another divider occluding a safety zone, accessible by way of an escape route only large enough for the smaller fish. We hypothesized that distinctive behavioral responses during the first social interaction would indicate a predisposition for one of the behavioral phenotypes in the subsequent interactions. Surprisingly, increased amount or intensity of aggression received had no significant effect on promoting escape in test fish. In fact, during the first day of interaction, fish that turned toward their larger opponent during attack eventually learned to escape. Escaping fish also learn to monitor the patrolling behavior of aggressors, and eventually escape primarily when they are not being observed. Escape per se, was also predicted in trout exhibiting increased movements directed toward the escape route. By contrast, fish that consistently remained in the tank with the aggressor (Stay) showed significantly higher frequency of swimming in subordinate positions, at the top or the bottom of the water column, as well as sitting at the bottom. In addition, a corticotropin-releasing factor (CRF)-induced behavior, snap-shake, was also displayed in untreated fish during aggressive social interaction, and blocked by a CRF1 receptor antagonist. Especially prevalent among the Stay phenotype, snap-shake indicates indecision regarding escape-related behaviors. Snap-shake was also exhibited by fish of the Escape phenotype, showing a positive correlation with latency to escape. These results demonstrate adaptive responses to stress that reflect evolutionarily conserved stress neurocircuitry which may translate to psychological disorders and decision-making across vertebrate taxa.

13.
Neuroscience ; 352: 273-284, 2017 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-28392296

RESUMO

Anxiety is differentially expressed across a continuum of stressful/fearful intensity, influenced by endocannabinoid systems and receptors. The hippocampus plays important roles in the regulation of affective behavior, emotion, and anxiety, as well as memory. Location of Cb1/Cb2 receptor action could be important in determining emotional valence, because while the dorsal hippocampus is involved in spatial memory and cognition, the ventral hippocampus has projections to the PFC, BNST, amygdala, and HPA axis, and is important for emotional responses to stress. During repeated social defeat in a Stress-Alternatives Model arena (SAM; an oval open field with escape portals only large enough for smaller mice), smaller C57BL6/N mice are subject to fear conditioning (tone=CS), and attacked by novel larger aggressive CD1 mice (US) over four daily (5min) trials. Each SAM trial presents an opportunity for escape or submission, with stable behavioral responses established by the second day of interaction. Additional groups had access to a running wheel. Social aggression plus fear conditioning stimulates enhanced Cb2 receptor gene expression in the dorsal CA1, dorsal and ventral dentate gyrus subregions in animals displaying a submissive behavioral phenotype. Escape behavior is associated with reduced Cb2 expression in the dorsal CA1 region, with freezing and escape latency correlated with mRNA levels. Escaping and submitting animals with access to running wheels had increased Cb2 mRNA in dorsal DG/CA1. These results suggest that the Cb2 receptor system is rapidly induced during anxiogenic social interactions plus fear conditioning or exercise; with responses potentially adaptive for coping mechanisms.


Assuntos
Regulação da Expressão Gênica/fisiologia , Hipocampo/metabolismo , Receptor CB2 de Canabinoide/genética , Receptor CB2 de Canabinoide/metabolismo , Estresse Psicológico/patologia , Estimulação Acústica/efeitos adversos , Animais , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Reação de Fuga/fisiologia , Medo/psicologia , Relações Interpessoais , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Condicionamento Físico Animal/fisiologia , RNA Mensageiro/metabolismo , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Estresse Psicológico/fisiopatologia
14.
Neurosci Biobehav Rev ; 76(Pt B): 415-422, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27018381

RESUMO

This review is a synopsis of an International Behavioral Neuroscience Society (IBNS) symposium which focused on the elements of Behavioral Neuroscience for which Robert J. Blanchard was a Pioneer, Leading Expert, Advocate, Mentor, and Sage. Bob Blanchard's work demonstrably changed our broad understanding of animal behavior, and led the way to experimental design and analysis for studies of animal behavior that helped to clarify the deep complexity and subtleties of behavior. Bob's impact on the field of Behavioral Neuroscience includes the behavior, neurocircuitry, neurochemistry, and pharmacology related to social interactions, aggressive behavior, defensive behaviors, flight, freezing, threat, attack, risk assessment, anxiety disorders, animal models, models of social behavior, and autism. The methods and designs developed by Bob Blanchard over a lifetime have been adopted by scientists around the world, and form a standard of excellence in the field. The article addresses these topics in a way that presents developments in the field, describes the newest research data, and pays tribute to a great scientist and founder of this field of work, Bob Blanchard.


Assuntos
Comportamento Exploratório , Animais , Comportamento Animal , Humanos , Comportamento Social , Estudantes
15.
Front Syst Neurosci ; 10: 69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27597819

RESUMO

Current trends in neuroscience research have moved toward a reliance on rodent animal models to study most aspects of brain function. Such laboratory-reared animals are highly inbred, have been disengaged from their natural environments for generations and appear to be of limited predictive value for successful clinical outcomes. In this Perspective article, we argue that research on a rich diversity of animal model systems is fundamental to new discoveries in evolutionarily conserved core physiological and molecular mechanisms that are the foundation of human brain function. Analysis of neural circuits across phyla will reveal general computational solutions that form the basis for adaptive behavioral responses. Further, we stress that development of ethoexperimental approaches to improve our understanding of behavioral nuance will help to realign our research strategies with therapeutic goals and improve the translational validity of specific animal models. Finally, we suggest that neuroscience has a role in environmental conservation of habitat and fauna that will preserve and protect the ecological settings that drive species-specific behavioral adaptations. A rich biodiversity will enhance our understanding of human brain function and lead in unpredicted directions for development of therapeutic treatments for neurological disorders.

16.
Psychoneuroendocrinology ; 63: 351-61, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26555428

RESUMO

Escalation of anxious behavior while environmentally and socially relevant contextual events amplify the intensity of emotional response produces a testable gradient of anxiety shaped by integrative circuitries. Apprehension of the Stress-Alternatives Model apparatus (SAM) oval open field (OF) is measured by the active latency to escape, and is delayed by unfamiliarity with the passageway. Familiar OF escape is the least anxious behavior along the continuum, which can be reduced by anxiolytics such as icv neuropeptide S (NPS). Social aggression increases anxiousness in the SAM, reducing the number of mice willing to escape by 50%. The apprehension accompanying escape during social aggression is diminished by anxiolytics, such as exercise and corticotropin releasing-factor receptor 1 (CRF1) antagonism, but exacerbated by anxiogenic treatment, like antagonism of α2-adrenoreceptors. What is more, the anxiolytic CRF1 and anxiogenic α2-adrenoreceptor antagonists also modify behavioral phenotypes, with CRF1 antagonism allowing escape by previously submissive animals, and α2-adrenoreceptor antagonism hindering escape in mice that previously engaged in it. Gene expression of NPS and brain-derived neurotrophic factor (BDNF) in the central amygdala (CeA), as well as corticosterone secretion, increased concomitantly with the escalating anxious content of the mouse-specific anxiety continuum. The general trend of CeA NPS and BDNF expression suggested that NPS production was promoted by increasing anxiousness, and that BDNF synthesis was associated with learning about ever-more anxious conditions. The intensity gradient for anxious behavior resulting from varying contextual conditions may yield an improved conceptualization of the complexity of mechanisms producing the natural continuum of human anxious conditions, and potential therapies that arise therefrom.


Assuntos
Ansiedade/psicologia , Rede Nervosa/fisiopatologia , Estresse Psicológico/psicologia , Agressão/efeitos dos fármacos , Agressão/psicologia , Animais , Ansiolíticos/farmacologia , Ansiedade/patologia , Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Reação de Fuga/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/metabolismo , Condicionamento Físico Animal/fisiologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Índice de Gravidade de Doença , Estresse Psicológico/patologia , Estresse Psicológico/fisiopatologia
17.
Neurosci Biobehav Rev ; 58: 63-78, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26271720

RESUMO

Major depressive disorder (MDD) is a devastating disease affecting over 300 million people worldwide, and costing an estimated 380 billion Euros in lost productivity and health care in the European Union alone. Although a wealth of research has been directed toward understanding and treating MDD, still no therapy has proved to be consistently and reliably effective in interrupting the symptoms of this disease. Recent clinical and preclinical studies, using genetic screening and transgenic rodents, respectively, suggest a major role of the CRF1 gene, and the central expression of CRF1 receptor protein in determining an individual's risk of developing MDD. This gene is widely expressed in brain tissue, and regulates an organism's immediate and long-term responses to social and environmental stressors, which are primary contributors to MDD. This review presents the current state of knowledge on CRF physiology, and how it may influence the occurrence of symptoms associated with MDD. Additionally, this review presents findings from multiple laboratories that were presented as part of a symposium on this topic at the annual 2014 meeting of the International Behavioral Neuroscience Society (IBNS). The ideas and data presented in this review demonstrate the great progress that has been made over the past few decades in our understanding of MDD, and provide a pathway forward toward developing novel treatments and detection methods for this disorder.


Assuntos
Hormônio Liberador da Corticotropina/metabolismo , Transtorno Depressivo Maior/metabolismo , Hormônio Liberador da Corticotropina/genética , Transtorno Depressivo Maior/genética , Humanos , Receptores de Hormônio Liberador da Corticotropina/genética
18.
Physiol Behav ; 146: 86-97, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26066728

RESUMO

By creating the Visible Burrow System (VBS) Bob Blanchard found a way to study the interaction of genetics, physiology, environment, and adaptive significance in a model with broad validity. The VBS changed the way we think about anxiety and affective disorders by allowing the mechanisms which control them to be observed in a dynamic setting. Critically, Blanchard used the VBS and other models to show how behavioral systems like defense are dependent upon context and behavioral elements unique to the individual. Inspired by the VBS, we developed a Stress Alternatives Model (SAM) to further explore the multifaceted dynamics of the stress response with a dichotomous choice condition. Like the VBS, the SAM is a naturalistic model built upon risk assessment and defensive behavior, but with a choice of response: escape or submission to a large conspecific aggressor. The anxiety of novelty during the first escape must be weighed against fear of the aggressor, and a decision must be made. Both outcomes are adaptively significant, evidenced by a 50/50 split in outcome across several study systems. By manipulating the variables of the SAM, we show that a gradient of anxiety exists that spans the contextual settings of escaping an open field, escaping from aggression, and submitting to aggression. These findings correspond with increasing levels of corticosterone and increasing levels of NPS and BDNF in the central amygdala as the context changes.Whereas some anxiolytics were able to reduce the latency to escape for some animals, only with the potent anxiolytic drug antalarmin (CRF1R-blocker) and the anxiogenic drug yohimbine (α2 antagonist) were we able to reverse the outcome for a substantial proportion of individuals. Our findings promote a novel method for modeling anxiety, offering a distinction between low-and-high levels, and accounting for individual variability. The translational value of the VBS is immeasurable, and it guided us and many other researchers to seek potential clinical solutions through a deeper understanding of regional neurochemistry and gene expression in concert with an ecological behavioral model.


Assuntos
Ansiedade/fisiopatologia , Modelos Animais de Doenças , Comportamento Social , Estresse Psicológico/fisiopatologia , Animais , Humanos , Ratos , Truta
19.
Front Behav Neurosci ; 8: 121, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24782729

RESUMO

In a newly developed conceptual model of stressful social decision-making, the Stress-Alternatives Model (SAM; used for the 1st time in mice) elicits two types of response: escape or remain submissively. Daily (4d) aggressive social interaction in a neutral arena between a C57BL6/N test mouse and a larger, novel aggressive CD1 mouse, begin after an audible tone (conditioned stimulus; CS). Although escape holes (only large enough for smaller test animals) are available, and the aggressor is unremittingly antagonistic, only half of the mice tested utilize the possibility of escape. During training, for mice that choose to leave the arena and social interaction, latency to escape dramatically decreases over time; this is also true for control C57BL6/N mice which experienced no aggression. Therefore, the open field of the SAM apparatus is intrinsically anxiogenic. It also means that submission to the aggressor is chosen despite this anxiety and the high intensity of the aggressive attacks and defeat. While both groups that received aggression displayed stress responsiveness, corticosterone levels were significantly higher in animals that chose submissive coexistence. Although both escaping and non-escaping groups of animals experienced aggression and defeat, submissive animals also exhibited classic fear conditioning, freezing in response to the CS alone, while escaping animals did not. In the basolateral amygdala (BLA), gene expression of brain-derived neurotrophic factor (BDNF) was diminished, at the same time neuropeptide S (NPS) expression was significantly elevated, but only in submissive animals. This increase in submission-evoked NPS mRNA expression was greatest in the central amygdala (CeA), which coincided with decreased BDNF expression. Reduced expression of BDNF was only found in submissive animals that also exhibit elevated NPS expression, despite elevated corticosterone in all socially interacting animals. The results suggest an interwoven relationship, linked by social context, between amygdalar BDNF, NPS and plasma corticosterone.

20.
Psychoneuroendocrinology ; 40: 17-26, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24485472

RESUMO

The orexin/hypocretin system interacts with many of the same circuitries contributing to stress-associated disorders like depression and anxiety. These include potentially reciprocal connections with corticotropin releasing factor (CRF) neurons which drive the hypothalamic-pituitary-adrenal (HPA) endocrine response in addition to having an anxiogenic effect in the central amygdala (CeA). Antagonism of the orexin type 1 receptor (Orx1) in the hypothalamus has also been shown to block panic attacks. However, few studies have investigated the effect of orexinergic signaling in the basolateral amygdala (BLA) which is responsible for contextual fear, and modulates the activity of the CeA. To this end, we chronically stressed c57bl/6 mice with social defeat and examined the gene expression of the orexin receptors in the BLA. We found that the transcripts for the Orx1 and Orx2 receptors diverged in the BLA with Orx1 increasing and Orx2 decreasing in animals that were susceptible to the chronic defeat. These changes were not seen in the prelimbic cortex (PrL) which sends efferents to the BLA. We then tried to recapitulate these expression patterns in the BLA using short hairpin interfering sequences delivered by adeno-associated viruses to knock down the orexin receptors. While the Orx1 knockdown did reduce locomotor activity, it did not decrease depressive or anxious behaviors. Knocking down the Orx2 receptors in the BLA increased anxious behavior as measured by reduced social preference and reduced time spent in the center of an open field. Due to the divergent expression patterns of the two receptors in response to chronic stress, orexinergic activity in the BLA may be responsible for bidirectional modulation of anxious behavior. Furthermore, these data raise the possibility that an Orx2 agonist may serve as an effective means to treat anxiety disorders.


Assuntos
Tonsila do Cerebelo/metabolismo , Ansiolíticos , Ansiedade/genética , Ansiedade/metabolismo , Receptores de Orexina/genética , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Ansiolíticos/metabolismo , Comportamento Animal/efeitos dos fármacos , Dominação-Subordinação , Medo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas dos Receptores de Orexina , Receptores de Orexina/metabolismo , RNA Interferente Pequeno/farmacologia , Resiliência Psicológica/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA