Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 950: 175295, 2024 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-39111453

RESUMO

The resource utilization of natural pyrite not only reduces secondary pollution but also brings certain environmental benefits. However, the green and efficient use of pyrite presents certain challenges. In this study, a novel electro-Fenton (EF) system was constructed utilizing copper modified graphite felt (GF/Cu) as cathode and natural pyrite (com-FeS2) as catalyst. The results demonstrated that the system exhibited a remarkable stability over an extensive pH range (3.0-10.0) and remained effective even under adverse environmental conditions, such as high salinity or elevated antibiotic concentration. After optimizing the reaction conditions, 0.2 mM sulfamerazine (SMZ) was almost completely degraded within 1.5 h. The results highlighted the catalytic role of Fe(II) on the com-FeS2 surface. Combined with quenching experiments and quantitative analysis of reactive oxygen species (ROS), the removal of SMZ was primarily attributed to the generation of •OH, ordered by 1O2 > â€¢O2- > â€¢OHads, a possible degradation pathway was proposed by HR-LC-MS. The biological toxicity after the reaction was detected, and the introduction of polyvinylpyrrolidone (PVP) was beneficial to reduce the biological toxicity of iron dissolution. This work provides new insights into the green and efficient resource utilization of natural pyrite and significantly expands the pH applicability range of the Fenton process, demonstrating the large-scale industrial application potential of pyrite.


Assuntos
Ferro , Sulfetos , Ferro/química , Concentração de Íons de Hidrogênio , Sulfetos/química , Sulfetos/toxicidade , Catálise , Peróxido de Hidrogênio/química , Poluentes Químicos da Água/química , Espécies Reativas de Oxigênio
2.
Chemosphere ; 353: 141588, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430939

RESUMO

FeS2 is well-known for its role in redox reactions. However, the mechanism within heterogeneous electron-Fenton (Hetero-EF) systems remains unclear. In this study, a novel FeS2 based three-dimensional system (GF/Cu-FeS2) with self-generation of H2O2 was investigated for Hetero-EF degradation of sulfamethazine (SMZ). The results revealed that SMZ could be completely removed in 1.5 h, accompanying with the mineralization efficiency of 96% within 4 h. This system performed excellent stability, evidenced by consistently eliminated 100% of SMZ within 2 h over 4 cycles. The generated Reactive Oxygen Species (ROS) of •OH and •O2- in every degradation cycle were quantitatively measured to confirm the stability of the GF/Cu-FeS2 system. Additionally, the redox reaction mechanism on the surface of FeS2 was thoroughly analyzed in detail. The accelerated reduction of Fe(III) to Fe(II), triggered by S22- on the surface of FeS2, promoted the iron cycling, thereby quickening the Fenton process. Density Functional Theory (DFT) results illustrated the process of S22- to be oxidized to in detail. Therefore, this work provides deeper insight into the mechanistic role of S22- in FeS2 for environmental remediation.


Assuntos
Compostos Férricos , Peróxido de Hidrogênio , Ferro , Enxofre , Sulfametazina , Compostos Ferrosos , Oxirredução
3.
Chemosphere ; 282: 131100, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34119736

RESUMO

The oxidative degradation of atrazine (ATR) using bimetallic Bi/Fe0 nanoparticles cooperated with citric acid (CA) and sodium citrate (NaCA) without extra addition of H2O2 or another oxidant was conducted. Almost 73% of ATR was removed in Bi/Fe0+NaCA + CA buffer system in 3 h, and the bimetallic Bi/Fe0 performs high stability and long service life in the buffer system according to the results of cyclic degradation experiments. The citrate iron complex of Fe(II)[Cit]- played the key role for the degradation process since it could quickly react with the generated H2O2 to produce free radicals in the Bi/Fe0+NaCA + CA system, which broadened the applicable pH range of the traditional Fenton reaction and promoted the oxidative degradation process of ATR. The possible degradation pathways of ATR were also investigated. In the Bi/Fe0+NaCA + CA buffer system, twelve kinds of ATR intermediate products were detected, of which the main products were dechlorination products and alkyl oxidative products. Due to the pH controllable of the Bi/Fe0+NaCA + CA system, it could reduce the acidity impact on the environment and makes the additional impact on the environment lower. Therefore, this work provides a new strategy for the degradation of ATR.


Assuntos
Atrazina , Ferro , Ácido Cítrico , Peróxido de Hidrogênio , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA