Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39348872

RESUMO

α-FA1-xCsxPbI3 is a promising absorbent material for efficient and stable perovskite solar cells (PSCs)1,2. However, the most efficient α-FA1-xCsxPbI3 PSCs require the inclusion of the additive methylammonium chloride3,4, which generates volatile organic residues (methylammonium) that limit device stability at elevated temperatures5. Previously, the highest certified power-conversion efficiency of α-FA1-xCsxPbI3 PSCs without methylammonium chloride was only approximately 24% (refs. 6,7), and these PSCs have yet to exhibit any stability advantages. Here we identify interfacial contact loss caused by the accumulation of Cs+ in conventional α-FA1-xCsxPbI3 PSCs, which deteriorates device performance and stability. Through in situ grazing-incidence wide-angle X-ray scattering analysis and density functional theory calculations, we demonstrate an intermediate-phase-assisted crystallization pathway enabled by acetate surface coordination to fabricate high-quality α-FA1-xCsxPbI3 films, without using the methylammonium additive. We herein report a certified stabilized power output efficiency of 25.94% and a reverse-scanning power-conversion efficiency of 26.64% for α-FA1-xCsxPbI3 PSCs. Moreover, the devices exhibited negligible contact losses and enhanced operational stability. They retained over 95% of their initial power-conversion efficiency after operating for over 2,000 h at the maximum power point under 1 sun, 85 °C and 60% relative humidity (ISOS-L-3).

2.
ACS Nano ; 17(18): 17600-17609, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37683288

RESUMO

Lead halide perovskite nanocrystals (LHP NCs) have rapidly emerged as one of the most promising materials for optical sources, photovoltaics, and sensor fields. The controlled synthesis of LHP NCs with high monodispersity and precise size tunability has been a subject of intensive research in recent years. However, due to their ionic nature, LHP NCs are usually formed instantaneously, and the corresponding nucleation and growth are difficult to monitor and regulated. In this Perspective, we summarize the representative attempts to achieve controlled synthesis of LHP NCs. We first highlight the burst nucleation and rapid growth characteristics of conventional synthesis methods. Afterward, we introduce the scheme of changing the LHP NCs into kinetically dominant, continuously size-tunable synthesis via nucleation-growth decoupling. We also summarize methods to eliminate undesired ripening effects and achieve homogeneous size distribution through rational ligand selection and solvent engineering. We hope this Perspective will facilitate the development of controlled LHP NCs synthesis protocols and advance the understanding of crystal growth fundamentals of perovskite materials.

3.
Nano Lett ; 23(14): 6465-6473, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37413789

RESUMO

Mixed-halide perovskites enable precise spectral tuning across the entire spectral range through composition engineering. However, mixed halide perovskites are susceptible to ion migration under continuous illumination or electric field, which significantly impedes the actual application of perovskite light-emitting diodes (PeLEDs). Here, we demonstrate a novel approach to introduce strong and homogeneous halogen bonds within the quasi-two-dimensional perovskite lattices by means of an interlayer locking structure, which effectively suppresses ion migration by increasing the corresponding activation energy. Various characterizations confirmed that intralattice halogen bonds enhance the stability of quasi-2D mixed-halide perovskite films. Here, we report that the PeLEDs exhibit an impressive 18.3% EQE with pure red emission with CIE color coordinate of (0.67, 0.33) matching Rec. 2100 standards and demonstrate an operational half-life of ∼540 min at an initial luminance of 100 cd m-2, representing one of the most stable mixed-halide pure red PeLEDs reported to date.

4.
Adv Mater ; 35(39): e2304094, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37343137

RESUMO

Mixed-halide perovskites show tunable emission wavelength across the visible-light range, with optimum control of the light color. However, color stability remains limited due to the notorious halide segregation under illumination or an electric field. Here, a versatile path toward high-quality mixed-halide perovskites with high emission properties and resistance to halide segregation is presented. Through systematic in and ex situ characterizations, key features for this advancement are proposed: a slowed and controllable crystallization process can promote achievement of halide homogeneity, which in turn ensures thermodynamic stability; meanwhile, downsizing perovskite nanoparticle to nanometer-scale dimensions can enhance their resistance to external stimuli, strengthening the phase stability. Leveraging this strategy, devices are developed based on CsPbCl1.5 Br1.5 perovskite that achieves a champion external quantum efficiency (EQE) of 9.8% at 464 nm, making it one of the most efficient deep-blue mixed-halide perovskite light-emitting diodes (PeLEDs) to date. Particularly, the device demonstrates excellent spectral stability, maintaining a constant emission profile and position for over 60 min of continuous operation. The versatility of this approach with CsPbBr1.5 I1.5 PeLEDs is further showcased, achieving an impressive EQE of 12.7% at 576 nm.

5.
Light Sci Appl ; 12(1): 75, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36935450

RESUMO

Lead-free halide perovskite materials possess low toxicity, broadband luminescence and robust stability compared with conventional lead-based perovskites, thus holding great promise for eyes-friendly white light LEDs. However, the traditionally used preparation methods with a long period and limited product yield have curtailed the commercialization of these materials. Here we introduce a universal hydrochloric acid-assistant powder-to-powder strategy which can accomplish the goals of thermal-, pressure-free, eco-friendliness, short time, low cost and high product yield, simultaneously. The obtained Cs2Na0.9Ag0.1In0.95Bi0.05Cl6 microcrystals exhibit bright self-trapped excitons emission with quantum yield of (98.3 ± 3.8)%, which could retain (90.5 ± 1.3)% and (96.8 ± 0.8)% after continuous heating or ultraviolet-irradiation for 1000 h, respectively. The phosphor converted-LED exhibited near-unity conversion efficiency from ultraviolet chip to self-trapped excitons emission at ~200 mA. Various ions doping (such as Cs2Na0.9Ag0.1InCl6:Ln3+) and other derived lead-free perovskite materials (such as Cs2ZrCl6 and Cs4MnBi2Cl12) with high luminous performance are all realized by our proposed strategy, which has shown excellent availability towards commercialization.

6.
Nano Lett ; 23(3): 985-992, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36715576

RESUMO

Despite the rapid progress in perovskite light-emitting diodes (PeLEDs), the electroluminescence performance of large-area perovskite devices lags far behind that of laboratory-size ones. Here, we report a 3.5 cm × 3.5 cm large-area PeLED with a record-high external quantum efficiency of 12.1% by creating an amphipathic molecular interface modifier of betaine citrate (BC) between the perovskite layer and the underlying hole transport layer (HTL). It is found that the surface wettability for various HTLs can be efficiently improved as a result of the coexistence of methyl and carboxyl groups in the BC molecules that makes favorable groups to selectively contact with the HTL surface and increases the surface free energy, which greatly facilitates the scalable process of solution-processed perovskite films. Moreover, the luminous performance of perovskite emitters is simultaneously enhanced through the coordination between C═O in the carboxyl groups and Pb dangling bonds.

7.
Nature ; 612(7941): 679-684, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36543955

RESUMO

Perovskite light-emitting diodes (PeLEDs) with an external quantum efficiency exceeding 20% have been achieved in both green and red wavelengths1-5; however, the performance of blue-emitting PeLEDs lags behind6,7. Ultrasmall CsPbBr3 quantum dots are promising candidates with which to realize efficient and stable blue PeLEDs, although it has proven challenging to synthesize a monodispersed population of ultrasmall CsPbBr3 quantum dots, and difficult to retain their solution-phase properties when casting into solid films8. Here we report the direct synthesis-on-substrate of films of suitably coupled, monodispersed, ultrasmall perovskite QDs. We develop ligand structures that enable control over the quantum dots' size, monodispersity and coupling during film-based synthesis. A head group (the side with higher electrostatic potential) on the ligand provides steric hindrance that suppresses the formation of layered perovskites. The tail (the side with lower electrostatic potential) is modified using halide substitution to increase the surface binding affinity, constraining resulting grains to sizes within the quantum confinement regime. The approach achieves high monodispersity (full-width at half-maximum = 23 nm with emission centred at 478 nm) united with strong coupling. We report as a result blue PeLEDs with an external quantum efficiency of 18% at 480 nm and 10% at 465 nm, to our knowledge the highest reported among perovskite blue LEDs by a factor of 1.5 and 2, respectively6,7.

8.
Nat Commun ; 12(1): 2207, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33850141

RESUMO

Serious performance decline arose for perovskite light-emitting diodes (PeLEDs) once the active area was enlarged. Here we investigate the failure mechanism of the widespread active film fabrication method; and ascribe severe phase-segregation to be the reason. We thereby introduce L-Norvaline to construct a COO--coordinated intermediate phase with low formation enthalpy. The new intermediate phase changes the crystallization pathway, thereby suppressing the phase-segregation. Accordingly, high-quality large-area quasi-2D films with desirable properties are obtained. Based on this, we further rationally adjusted films' recombination kinetics. We reported a series of highly-efficient green quasi-2D PeLEDs with active areas of 9.0 cm2. The peak EQE of 16.4% is achieved in = 3, represent the most efficient large-area PeLEDs yet. Meanwhile, high brightness device with luminance up to 9.1 × 104 cd m-2 has achieved in = 10 film.

9.
Light Sci Appl ; 10(1): 61, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741895

RESUMO

Quasi-two-dimensional (quasi-2D) perovskites have attracted extraordinary attention due to their superior semiconducting properties and have emerged as one of the most promising materials for next-generation light-emitting diodes (LEDs). The outstanding optical properties originate from their structural characteristics. In particular, the inherent quantum-well structure endows them with a large exciton binding energy due to the strong dielectric- and quantum-confinement effects; the corresponding energy transfer among different n-value species thus results in high photoluminescence quantum yields (PLQYs), particularly at low excitation intensities. The review herein presents an overview of the inherent properties of quasi-2D perovskite materials, the corresponding energy transfer and spectral tunability methodologies for thin films, as well as their application in high-performance LEDs. We then summarize the challenges and potential research directions towards developing high-performance and stable quasi-2D PeLEDs. The review thus provides a systematic and timely summary for the community to deepen the understanding of quasi-2D perovskite materials and resulting LED devices.

10.
Nat Commun ; 12(1): 336, 2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436618

RESUMO

Rapid Auger recombination represents an important challenge faced by quasi-2D perovskites, which induces resulting perovskite light-emitting diodes' (PeLEDs) efficiency roll-off. In principle, Auger recombination rate is proportional to materials' exciton binding energy (Eb). Thus, Auger recombination can be suppressed by reducing the corresponding materials' Eb. Here, a polar molecule, p-fluorophenethylammonium, is employed to generate quasi-2D perovskites with reduced Eb. Recombination kinetics reveal the Auger recombination rate does decrease to one-order-of magnitude lower compared to its PEA+ analogues. After effective passivation, nonradiative recombination is greatly suppressed, which enables resulting films to exhibit outstanding photoluminescence quantum yields in a broad range of excitation density. We herein demonstrate the very efficient PeLEDs with a peak external quantum efficiency of 20.36%. More importantly, devices exhibit a record luminance of 82,480 cd m-2 due to the suppressed efficiency roll-off, which represent one of the brightest visible PeLEDs yet.

11.
Nanoscale ; 12(35): 18379-18389, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32870231

RESUMO

Hexagonal boron nitride is well known for its unique structure and excellent physical properties, particularly in hexagonal boron nitride nanosheets (BNNSs) with high potential in multiple technological applications. However, its severe layer-by-layer aggregation and incompatibility with processing liquids or condensed phase materials pose a great challenge. Covalent functionalization of BNNSs has been a common approach to address these critical issues, yet it is extremely difficult to carry out due to the chemical inertness of BNNSs. In this study, we report a novel and general route to covalently functionalize BNNSs via a simple reduction reaction. This involves initial negative charging through effective reductive activation which enables subsequent reactions with various organic alkyl halides. Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and thermogravimetric analysis (TGA) results confirm that linear alkyl chains with varying lengths are successfully grafted onto BNNSs, which leads to matched compatibility with organic media and the exfoliation level of few-layer thickness. The increase of the alkyl chain length considerably promotes their solubility in organic solvents with iodoalkanes as the most efficient grafting agents. Incorporation of alkylated BNNSs into a polymer matrix at low filler loadings leads to significant enhancements in mechanical properties over neat polymers, suggesting their exceptional reinforcement for polymer nanocomposites. This facile and scalable reductive chemistry route is applicable to versatile chemical modifications of BNNSs with diverse functional groups and grafting agents by reactions with suitable electrophiles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA