Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1305: 342542, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38677836

RESUMO

Target discovery of natural products is a key step in the development of new drugs, and it is also a difficult speed-limiting step. In this study, a traditional Chinese medicine microspheres (TCM-MPs) target fishing strategy was developed to discover the key drug targets from complex system. The microspheres are composed of Fe3O4 magnetic nanolayer, oleic acid modified layer, the photoaffinity group (4- [3-(Trifluoromethyl)-3H-diazirin-3-yl] benzoic acid, TAD) layer and active small molecule layer from inside to outside. TAD produces highly reactive carbene under ultraviolet light, which can realize the self-assembly and fixation of drug active small molecules with non-selective properties. Here, taking Shenqi Jiangtang Granules (SJG) as an example, the constructed TCM-MPs was used to fish the related proteins of human glomerular mesangial cells (HMCs) lysate. 28 differential proteins were screened. According to the target analysis based on bioinformatics, GNAS was selected as the key target, which participated in insulin secretion and cAMP signaling pathway. To further verify the interaction effect of GNAS and small molecules, a reverse fishing technique was established based on bio-layer interferometry (BLI) coupled with UHPLC-Q/TOF-MS/MS. The results displayed that 26 small molecules may potentially interact with GNAS, and 7 of them were found to have strong binding activity. In vitro experiments for HMCs have shown that 7 active compounds can significantly activate the cAMP pathway by binding to GNAS. The developed TCM-MPs target fishing strategy combined with BLI reverse fishing technology to screen out key proteins that directly interact with active ingredients from complex target protein systems is significant for the discovery of drug targets for complex systems of TCM.


Assuntos
Medicina Tradicional Chinesa , Microesferas , Humanos , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Descoberta de Drogas , Interferometria/métodos
2.
Thromb Haemost ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38224965

RESUMO

BACKGROUND: Vascular injury results in uncontrollable hemorrhage in hemorrhagic diseases and excessive antithrombotic therapy. Safe and efficient hemostatic agents which can be orally administered are urgently needed. Platelets play indispensable roles in hemostasis, but there is no drug exerting hemostatic effects through enhancing platelet function. METHODS: The regulatory effects of icaritin, a natural compound isolated from Herba Epimedii, on the dense granule release, thromboxane A2 (TxA2) synthesis, α-granule release, activation of integrin αIIbß3, and aggregation of platelets induced by multiple agonists were investigated. The effects of icaritin on tail vein bleeding times of warfarin-treated mice were also evaluated. Furthermore, we investigated the underlying mechanisms by which icaritin exerted its pharmacological effects. RESULTS: Icaritin alone did not activate platelets, but significantly potentiated the dense granule release, α-granule release, activation of integrin αIIbß3, and aggregation of platelets induced by thrombin and U46619. Icaritin also shortened tail vein bleeding times of mice treated with warfarin. In addition, phosphorylated proteome analysis, immunoblotting analysis, and pharmacological research revealed that icaritin sensitized the activation of phospholipase Cγ2 (PLCγ2)-protein kinase C (PKC) signaling pathways, which play important roles in platelet activation. CONCLUSION: Icaritin can sensitize platelet activation induced by thrombin and TxA2 through enhancing the activation of PLCγ2-PKC signaling pathways and promote hemostasis, and has potential to be developed into a novel orally deliverable therapeutic agent for hemorrhages.

3.
J Ethnopharmacol ; 322: 117668, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159829

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Mailuo shutong pill (MLST) has been widely used in clinical treatment of superficial thrombotic phlebitis (STP). Nevertheless, the major active components of MLST and the mechanism of synergistic action have not been reported. AIM OF THE STUDY: The present study aimed to evaluate the improving effects and the underlying mechanism of MLST on mannitol-induced STP in rabbits. MATERIAL AND METHODS: In this study, Ultrahigh-performance liquid chromatography electrospray ionization quadrupole-exactive orbitrap mass spectrometry (UHPLC-ESI-Q-Exactive-Orbitrap-MS) was used to analyze and identify the chemical composition of MLST and the prototype components absorbed into the blood. Then, according to the prototype components in serum, the targets and mechanisms of MLST were explored by applying network pharmacology. The rabbit model of STP was established by injecting 20% mannitol into bilateral auricular vein. The pathological changes of rabbit ear tissues, inflammatory factors, coagulation function and hemorheology were detected. In addition, molecular docking verified the interaction between the main active ingredient and the key target. Finally, the PI3K/AKT pathway and its regulated downstream pathways were verified by Western blot. RESULTS: A total of 96 MLST components and 53 prototypical components absorbed into the blood were successfully identified. Based on network pharmacology, PI3K/AKT pathway and 10 chemical components closely related to this pathway were obtained. Hematoxylin-eosin (HE) staining results indicated that MLST effectively improved of the pathological damage of ear tissues. MLST decreased levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, IL-6 and C-reactive protein (CRP). The expression of platelets (PLT) and fibrinogen concentration (FIB) was decreased, while prothrombin time (PT) and activated partial thromboplastin time (APTT) were prolonged. In addition, the plasma viscosity and whole blood viscosity in the MLST groups were significantly decreased. The more important discovery was that the expressions of P-PI3K, VEGF, P-AKT, P-IκB-α, P-NF-κB, NLRP3, ASC, Cleaved IL-1ß and Cleaved Caspase-1 were effectively reversed after treatment with MLST. CONCLUSIONS: This study comprehensively analyzed and characterized the chemical composition of MLST and the prototypical components absorbed into the blood. This study strongly confirmed the pharmacodynamic effect of MLST on STP. More importantly, this pharmacodynamic effect was achieved through inhibition of the PI3K/AKT pathway and its regulated NF-κB and NLRP3 pathways.


Assuntos
Medicamentos de Ervas Chinesas , Tromboflebite , Animais , Coelhos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Simulação de Acoplamento Molecular , Tipagem de Sequências Multilocus , NF-kappa B , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Manitol , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
4.
Molecules ; 28(21)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37959665

RESUMO

Acute kidney injury (AKI) is a complication of a wide range of serious illnesses for which there is still no better therapeutic agent. We demonstrated that M-18C has a favorable inhibitory effect on monoacylglycerol lipase (MAGL), and several studies have demonstrated that nerve inflammation could be effectively alleviated by inhibiting MAGL, suggesting that M-18C has good anti-inflammatory activity. In this study, we investigated the effect of M-18C on LPS-induced acute kidney injury (AKI), both in vivo and in vitro, by using liquid chromatography-mass spectrometry (LC-MS), 16S rRNA gene sequencing, Western blot, and immunohistochemistry. The results showed that both in vivo and in vitro M-18C reduced the release of TNF-α and IL-1ß by inhibiting the expression of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) and apoptosis-associated speck-like protein containing a CARD (ASC) protein; in addition, M-18C was able to intervene in LPS-induced AKI by ameliorating renal pathological injury, repairing the intestinal barrier, and regulating gut bacterial flora and serum metabolism. In conclusion, this study suggests that M-18C has the potential to be a new drug for the treatment of AKI.


Assuntos
Injúria Renal Aguda , Microbioma Gastrointestinal , Humanos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Monoacilglicerol Lipases , Lipopolissacarídeos/efeitos adversos , RNA Ribossômico 16S , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Inflamassomos/metabolismo
5.
Int Immunopharmacol ; 125(Pt A): 111090, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866312

RESUMO

Rheumatoid arthritis (RA) is an inflammatory-mediated autoimmune disease characterized by persistent joint enlargement, synovial cartilage damage, and inflammatory infiltrates. Although the pathogenesis and treatment of RA are still currently insufficient, the importance of the intestine flora, metabolism and immunity for RA has been gradually recognized, and many intestine regulatory strategies have been used to treat RA. However, the relationship between RA and intestine flora, metabolism and immunity has not been fully expounded. In this study, Complete Freund's Adjuvant (CFA) was used to establish RA model, CyTOF technology was used to study the changes of intestinal immune cell types, 16S rRNA technology was used to analyze the differences of intestinal flora, and LC-MS technology was used to explain the effects of metabolites produced by the changed intestinal flora on RA. Moreover, we systematically explored how the imbalance of intestinal flora changed the intestinal immune status through its metabolites in RA mice. Our results showed that the intestinal flora of RA mice changed significantly, and the bacteria producing short-chain fatty acids (SCFAs), indole classes and secondary bile acids were significantly reduced. The abundance of SCFAs, indole classes and secondary bile acids in the intestine were significantly decreased. The balance of immune cells in the intestine of RA mice was significantly disrupted, with an overall decrease in immune cells. This work reveals the possible relationship between intestinal flora, metabolism and immunity and RA in mice, which will provide new therapeutic strategies for RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Microbioma Gastrointestinal , Camundongos , Animais , Adjuvante de Freund , RNA Ribossômico 16S/genética , Camundongos Endogâmicos C57BL , Artrite Reumatoide/tratamento farmacológico , Intestinos/patologia , Indóis/uso terapêutico , Ácidos e Sais Biliares , Artrite Experimental/tratamento farmacológico
6.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4711-4721, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802810

RESUMO

This study aimed to investigate the protective effect and underlying mechanism of Mailuo Shutong Pills(MLST) on posterior limb swelling caused by femur fracture in rats. The rats were randomly divided into a sham operation group, a model group, a low-dose MLST group(1.8 g·kg~(-1)·d~(-1)), a high-dose MLST group(3.6 g·kg~(-1)·d~(-1)), and a positive drug group(60 mg·kg~(-1)·d~(-1) Maizhiling Tablets). The femur in the sham operation group was exposed and the wound was sutured, while the other four groups underwent mechanical damage to cause femur fracture. The rats were treated with corresponding drugs by gavage 7 days before modeling and 5 days after modeling, while those in the sham operation group and the model group were given an equivalent dose of distilled water by gavage. Hematoxylin-eosin(HE) staining was used to detect the pathological injury of the posterior limb muscle tissues in rats, and the degree of hind limb swelling was measured. The enzyme-linked immunosorbent assay(ELISA) kit was used to detect the expression levels of interleukin-6(IL-6), interleukin-1ß(IL-1ß), and tumor necrosis factor-α(TNF-α) in the serum of rats in each group. The activity of superoxide dismutase(SOD), malondialdehyde(MDA), catalase(CAT), and glutathione peroxidase(GSH-Px) in rat serum was also measured. Western blot was used to detect the protein expression levels of heme oxygenase 1(HO-1), NAD(P)H quinone oxidoreductase 1(NQO1), and nuclear transcription factor E2-related factor 2(Nrf2) in rat posterior limb muscle tissues. The changes in the intestinal flora and intestinal metabolites in rats were detected by 16S rDNA sequencing and ultra-performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS), respectively, to explore the underlying mechanism of MLST in treating posterior limb swelling caused by femur fracture in rats. Compared with the model group, MLST significantly improved the degree of posterior limb swelling in rats, reduced the levels of serum inflammatory factors, and alleviated oxidative stress injury. The HE staining results showed that the inflammatory infiltration in the posterior limb muscle tissues of rats in the MLST groups was significantly improved. Western blot results showed that MLST significantly increased the protein expression of HO-1, NQO1, and Nrf2 in rat posterior limb muscle tissues compared with the model group. The 16S rDNA sequencing results showed that MLST improved the disorder of intestinal flora in rats after femur fracture. The UPLC-MS/MS results showed that MLST significantly affected the bile acid biosynthesis and metabolism pathway in the intestine after femur fracture, and the Spearman analysis confirmed that the metabolite deoxycholic acid involved in bile acid biosynthesis was positively correlated with the abundance of Turicibacter. The metabolite cholic acid was positively correlated with the abundance of Papilibacter, Staphylococcus, and Intestinimonas. The metabolite lithocholic acid was positively correlated with Papilibacter and Intestinimonas. The above results indicated that MLST could protect against the posterior limb swelling caused by femur fracture in rats. This protective effect may be achieved by improving the pathological injury of the posterior limb muscle, reducing the expression levels of inflammatory and oxidative stress-related factors in serum, reducing the oxidative injury of the posterior limb muscle, improving intestinal flora, and balancing the biosynthesis of bile acids in the intestine.


Assuntos
Microbioma Gastrointestinal , Fator 2 Relacionado a NF-E2 , Ratos , Animais , Fator 2 Relacionado a NF-E2/metabolismo , Cromatografia Líquida , Tipagem de Sequências Multilocus , Espectrometria de Massas em Tandem , Estresse Oxidativo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fêmur , Ácidos e Sais Biliares , DNA Ribossômico , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
7.
Biogerontology ; 2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37572203

RESUMO

Jingfang Granule (JFG), a traditional Chinese medicine, is frequently employed in clinical settings for the treatment of infectious diseases. Nevertheless, the anti-aging and anti-infection effects of JFG remain uncertain. In the present study, these effects were evaluated using the Caenorhabditis elegans (C. elegans) N2 as a model organism. The results demonstrated that JFG significantly increased the median lifespan of C. elegans by 31.2% at a dosage of 10 mg/mL, without any discernible adverse effects, such as alterations in the pharyngeal pumping rate or nematode motility. Moreover, JFG notably increased oviposition by 11.3%. Subsequent investigations revealed that JFG enhanced oxidative stress resistance in C. elegans by reducing reactive oxygen species levels and significantly improved survival rates in nematodes infected with Pseudomonas aeruginosa ATCC 9027. These findings suggest that JFG delays reproductive senescence in C. elegans and protects them from oxidative stress, thereby extending their lifespan. Additionally, JFG improves the survival of P. aeruginosa-infected nematodes. Consequently, JFG has potential as a candidate for the development of anti-aging and anti-infection functional medicines.

8.
Sci Rep ; 13(1): 14075, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37640843

RESUMO

Relation extraction is one of the important steps in building a knowledge graph. Its main objective is to extract semantic relationships from identified entity pairs in sentences, playing a crucial role in semantic understanding and knowledge graph construction. Remote supervised relation extraction aligns knowledge bases with natural language texts and generates labeled data, which alleviates the burden of manually annotating datasets. However, the labeled corpus obtained from remote supervision contains a large amount of noisy data, which greatly affects the training of relation extraction models. In this paper, we propose the hypothesis that key semantic information within the sentence plays a crucial role in entity relation extraction in the task of remote supervised relation extraction. Based on this hypothesis, we divide the sentence into three segments by splitting it according to the positions of entities, starting from within the sentence. Then, using intra-sentence attention mechanisms, we identify fine-grained semantic features within the sentence to reduce the interference of irrelevant noise information. We also improved the intra-bag attention mechanism by setting a threshold gate to filter out low-relevant noisy sentences, minimizing the impact of noise on the relation extraction model, and making full use of available positive semantic information. Experimental results show that the proposed relation extraction model in this paper achieves improvements in precision-recall curve, P@N value, and AUC value compared to existing methods, demonstrating the effectiveness of this model.

9.
Zhongguo Zhong Yao Za Zhi ; 48(10): 2803-2809, 2023 May.
Artigo em Chinês | MEDLINE | ID: mdl-37282940

RESUMO

This study aimed to explore the potentiating effect and mechanism of the extract of Jingfang Granules(JFG) on the activation of macrophages. The RAW264.7 cells were treated with JFG extract and then stimulated by multiple agents. Subsequently, mRNA was extracted, and reverse transcription-polymerase chain reaction(RT-PCR) was used to measure the mRNA transcription of multiple cytokines in RAW264.7 cells. The levels of cytokines in the cell supernatant were detected by enzyme-linked immunosorbent assay(ELISA). In addition, the intracellular proteins were extracted and the activation of signaling pathways was determined by Western blot. The results showed that JFG extract alone could not promote or slightly promote the mRNA transcription of TNF-α, IL-6, IL-1ß, MIP-1α, MCP-1, CCL5, IP-10, and IFN-ß, and significantly enhance the mRNA transcription of these cytokines in RAW264.7 cells induced by R848 and CpG in a dose-dependent manner. Furthermore, JFG extract also potentiated the secretion of TNF-α, IL-6, MCP-1, and IFN-ß by RAW264.7 cells stimulated with R848 and CpG. As revealed by mechanism analysis, JFG extract enhanced the phosphorylation of p38, ERK1/2, IRF3, STAT1, and STAT3 in RAW264.7 cells induced by CpG. The findings of this study indicate that JFG extract can selectively potentiate the activation of macrophages induced by R848 and CpG, which may be attributed to the promotion of the activation of MAPKs, IRF3, and STAT1/3 signaling pathways.


Assuntos
Interleucina-6 , Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos , Citocinas/genética , Citocinas/metabolismo , RNA Mensageiro/metabolismo
10.
J Ovarian Res ; 16(1): 109, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277785

RESUMO

BACKGROUND: This study aimed to compare the characteristics of the gut microbiota and their metabolite profiles between polycystic ovary syndrome (PCOS) and orlistat-treated PCOS rats (ORL-PCOS), which could help to better understand the underlying mechanism of the effect of orlistat on PCOS. METHODS: PCOS rat models were established using letrozole combined with a high-fat diet. Ten rats were randomly selected as a PCOS control group (PCOS). The other three groups (n = 10/group) were additionally supplemented with different doses of orlistat (low, medium, high). Then, fecal samples of the PCOS and ORL-PCOS groups were analysed by 16S rRNA gene sequencing and untargeted metabolomics. Blood samples were collected to detect serum sex hormones and lipids. RESULTS: The results showed that orlistat attenuated the body weight gain, decreased the levels of T, LH, the LH/FSH ratio, TC, TG and LDL-C; increased the level of E2; and improved estrous cycle disorder in PCOS rats. The bacterial richness and diversity of the gut microbiota in the ORL-PCOS group were higher than those in the PCOS group. The ratio of Firmicutes to Bacteroidetes was decreased with orlistat treatment. Moreover, orlistat treatment led to a significant decrease in the relative abundance of Ruminococcaceae and Lactobacillaceae, and increases in the abundances of Muribaculaceae and Bacteroidaceae. Metabolic analysis identified 216 differential fecal metabolites in total and 6 enriched KEGG pathways between the two groups, including steroid hormone biosynthesis, neuroactive ligand-receptor interaction and vitamin digestion and absorption. Steroid hormone biosynthesis was the pathway with the most significant enrichment. The correlations between the gut microbiota and differential metabolites were calculated, which may provide a basis for understanding the composition and function of microbial communities. CONCLUSIONS: Our data suggested that orlistat exerts a PCOS treatment effect, which may be mediated by modifying the structure and composition of the gut microbiota, as well as the metabolite profiles of PCOS rats.


Assuntos
Microbiota , Síndrome do Ovário Policístico , Humanos , Feminino , Ratos , Animais , Síndrome do Ovário Policístico/metabolismo , Orlistate/uso terapêutico , Letrozol/uso terapêutico , Dieta Hiperlipídica/efeitos adversos , RNA Ribossômico 16S/genética , Hormônios Esteroides Gonadais , Metabolômica , Esteroides/uso terapêutico
11.
Biomed Pharmacother ; 165: 115050, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37354813

RESUMO

The dramatic changes in global climate on human health have been extremely severe. The immune disorder caused by low temperature and high humidity (LTHH) have become a severe public health issue. Clinically, Jingfang granule (JF) has the effect of dispelling cold and eliminating dampness, and is widely used in the treatment of cold caused by wind and cold, autoimmune diseases, and COVID-19 with cold-dampness stagnating in the lung pattern. Our study aims to elucidate the effect of JF on LTHH-induced immune disorders in mice as well as the underlying mechanisms. In this study, JF increased the spleen index, improved fecal character, repaired the intestinal barrier and alleviated intestinal inflammatory responses. Most importantly, JF ameliorated immune disorder in LTHH mice, which was manifested primarily by the significant increase in gdT, CD8+ Tcm, and CD8+ Tem cells, as well as the decrease in TH1, TH17, CD4+ Tem1, CD4+ Tem2, immature NK, mature NK cells, and M1-like macrophages. Interestingly, the JF treatment not only regulated the gut microbiota by decreasing the abundance of harmful bacteria, as well as up-regulating the abundance of beneficial bacteria, but also ameliorated the metabolic disorders by reversing the levels of fecal metabolites to normality. The results of the correlation analysis demonstrated a significant association among gut microbiota, fecal metabolites and immune cells. In addition, JF inhibited the TLR4/NF-κB/NLRP3 pathway in LTHH mice. In conclusion, our results suggested that JF alleviated inflammation and immune disorders in LTHH mice by restoring gut microbiota and fecal metabolism.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Doenças do Sistema Imunitário , Humanos , Animais , Camundongos , Umidade , Temperatura , Inflamação/tratamento farmacológico
12.
J Ethnopharmacol ; 311: 116423, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37011735

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jingfang granules (JF), one famous traditional Chinese formula in "She Sheng Zhong Miao Fang" written by Shi-Che Zhang during the Ming Dynasty era, has been widely used to prevent epidemic diseases in history and now was recommended for the treatment of coronavirus disease 2019 (COVID-19) in China. However, the roles of JF against acute lung injury and its mechanisms remain unclear. AIM OF THE STUDY: Acute lung injury (ALI) and its progressive acute respiratory distress syndrome (ARDS) are a continuum of lung inflammatory disease with high morbidity and mortality in clinic, especially in COVID-19 patients. The present study aims to investigate the effect of JF on ALI and clarify its underlying mechanisms for clinical application in COVID-19 control. METHODS: Bleomycin-induced ALI mice were given oral gavage daily for seven days with or without Jingfang granules (2, 4 g/kg). The body weight, lung wet/dry weight ratios, lung appearance and tissue histopathology were evaluated. Quantitative real-time PCR, biochemical bronchoalveolar lavage fluids analysis was used to determine the gene expression of proinflammation factor and infiltrated inflammatory cells in lung. Immunofluorescence image and western blot were used to detect the markers of alveolar macrophages (AMs), endothelial cell apoptosis and changes of CD200-CD200R pathway. RESULTS: Firstly, histopathological analysis showed that JF significantly attenuated pulmonary injury and inflammatory response in ALI mice. Then, cytokine detection, inflammatory cells assay, and JNKs and p38 pathway analysis indicated that the recruitment and activation of alveolar macrophages was the main reason to cause ALI and JF could reverse this variation. Next, immunofluorescence staining and TUNEL assay showed that JF upregulated the expression of CD200 and suppressed the apoptosis of alveolar endothelial cells. Finally, double immunofluorescence staining of CD200 and CD11c indicated that the seriously damaged tissue had the lower CD200 while more AMs infiltration, which was confirmed by RT-PCR analysis of CD200/CD200R. CONCLUSIONS: Jingfang granules can protect lung from acu te injury and mitigate the recruitment and overactive AMs-induced inflammation via CD200-CD200R immunoregulatory signal axis, which will provide an experimental basis for Jingfang granules clinical applications in COVID-19.


Assuntos
Lesão Pulmonar Aguda , COVID-19 , Feminino , Camundongos , Animais , Bleomicina/toxicidade , Células Endoteliais/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão/patologia , Lipopolissacarídeos
13.
J Org Chem ; 88(9): 5844-5851, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37026980

RESUMO

Loganetin is the aglycone moiety of loganin that has a 5,6-fused bicyclic framework and exhibits a wide range of interesting biological activities. A gram-scale synthesis of loganetin has been accomplished from the readily accessible S-(+)-carvone. The key reactions of the synthesis are a Favorskii rearrangement to introduce four stereocenters and a sulfuric acid-meditated deprotection/cyclization reaction to assemble the sensitive dihydropyran ring with complete stereoselectivity. This work also enables us to synthesize C1 methoxy loganetin and the enantiomer of loganetin successfully.

14.
Zhongguo Zhong Yao Za Zhi ; 48(3): 789-796, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872243

RESUMO

This study aimed to identify the direct pharmacological targets of Jingfang Granules in treating infectious pneumonia via "target fishing" strategy. Moreover, the molecular mechanism of Jingfang Granules in treating infectious pneumonia was also investigated based on target-related pharmacological signaling pathways. First, the Jingfang Granules extract-bound magnetic nanoparticles were prepared, which were incubated with lipopolysaccharide(LPS)-induced mouse pneumonia tissue lysates. The captured proteins were analyzed by high-resolution mass spectrometry(HRMS), and the target groups with specific binding to the Jingfang Granules extract were screened out. Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis was used to identify the target protein-associated signaling pathways. On this basis, the LPS-induced mouse model of infectious pneumonia was established. The possible biological functions of target proteins were verified by hematoxylin-eosin(HE) staining and immunohistochemical assay. A total of 186 Jingfang Granules-specific binding proteins were identified from lung tissues. KEGG pathway enrichment analysis showed that the target protein-associated signaling pathways mainly included Salmonella infection, vascular and pulmonary epithelial adherens junction, ribosomal viral replication, viral endocytosis, and fatty acid degradation. The target functions of Jingfang Granules were related to pulmonary inflammation and immunity, pulmonary energy metabolism, pulmonary microcirculation, and viral infection. Based on the in vivo inflammation model, Jingfang Granules significantly improved the alveolar structure of the LPS-induced mouse model of infectious pneumonia and down-regulated the expressions of tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6). Meanwhile, Jingfang Gra-nules significantly up-regulated the expressions of key proteins of mitochondrial function COX Ⅳ and ATP, microcirculation-related proteins CD31 and Occludin, and proteins associated with viral infection DDX21 and DDX3. These results suggest that Jingfang Gra-nules can inhibit lung inflammation, improve lung energy metabolism and pulmonary microcirculation, resist virus infection, thus playing a protective role in the lung. This study systematically explains the molecular mechanism of Jingfang Granules in the treatment of respiratory inflammation from the perspective of target-signaling pathway-pharmacological efficacy, thereby providing key information for clinical rational use of Jingfang Granules and expanding potential pharmacological application.


Assuntos
Anti-Infecciosos , Pneumonia , Animais , Camundongos , Lipopolissacarídeos , Inflamação , Bioensaio , Modelos Animais de Doenças , Interleucina-6
15.
Front Pharmacol ; 14: 1151447, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969838

RESUMO

As a potential drug candidate for the treatment of hypertension and complications, it is speculated that the component-based Chinese medicine of Ginkgo biloba leaves (GBCCM) which mainly composed of flavonoid aglycones (FAs) and terpene lactones (TLs) may have different pharmacological effects at different doses or ratios. Taking the normal mice as the study object, metabonomics was conducted by giving different doses of GBCCM. Based on the components of GBCCM absorbed into the blood, the network pharmacological prediction was carried out. By integrating the results of metabonomics and network pharmacology, predict the possible pharmacological effects of GBCCM and conduct experimental verification. It was found that eight of the 19 compounds in GBCCM could be absorbed into the blood. GBCCM mainly affected the signal pathways of unsaturated fatty acid, pyruvate, bile acid, melanin and stem cells. It was speculated that GBCCM might have activities such as lowering blood pressure, regulating stem cell proliferation and melanogenesis. By establishing the models of mushroom tyrosinase, rat bone marrow mesenchymal stem cells (BMSCs) and spontaneously hypertensive rats (SHRs), we found that FAs and TLs showed synergistic effect in hypertension and tyrosinase models, and the optimal ratio was 3:2 (4.4 mg/kg) and 1:1 (0.4 mg/ml), respectively. As effective substances, FAs significantly promoted the proliferation of rat BMSCs on the third and fifth days at the concentration of 0.2 µg/ml (p < 0.05). GBCCM showed a variety of pharmacological effects at different doses and ratios, which provided an important reference for the druggability of GBCCM.

16.
Biomed Pharmacother ; 161: 114495, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36906969

RESUMO

Constipation arising from the poor bowel movement is a rife enteric health problem. Shouhui Tongbian Capsule (SHTB) is a traditional Chinese medicine (TCM) which effectively improve the symptoms of constipation. However, the mechanism has not been fully evaluated. The purpose of this study was to evaluate the effect of SHTB on the symptoms and intestinal barrier of mice with constipation. Our data showed that SHTB effectively improved the constipation induced by diphenoxylate, which was confirmed by shorter first defecation time, higher internal propulsion rate and fecal water content. Additionally, SHTB improved the intestinal barrier function, which was manifested by inhibiting the leakage of Evans blue in intestinal tissues and increasing the expression of occludin and ZO-1. SHTB inhibited NLRP3 inflammasome signaling pathway and TLR4/NF-κB signaling pathway, reduced the number of proinflammatory cell subsets and increased the number of immunosuppressive cell subsets to relieve inflammation. The photochemically induced reaction coupling system combined with cellular thermal shift assay and central carbon metabolomics technology confirmed that SHTB activated AMPKα through targeted binding to Prkaa1 to regulate Glycolysis/Gluconeogenesis and Pentose Phosphate Pathway, and finally inhibited intestinal inflammation. Finally, no obvious toxicity related to SHTB was found in a repeated drug administration toxicity test for consecutive 13 weeks. Collectively, we reported SHTB as a TCM targeting Prkaa1 for anti-inflammation to improve intestinal barrier in mice with constipation. These findings broaden our knowledge of Prkaa1 as a druggable target protein for inflammation inhibition, and open a new avenue to novel therapy strategy for constipation injury.


Assuntos
Inflamação , NF-kappa B , Animais , Camundongos , Constipação Intestinal/tratamento farmacológico , Inflamação/tratamento farmacológico , Intestinos , NF-kappa B/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por AMP/metabolismo
17.
Zhongguo Zhong Yao Za Zhi ; 48(2): 472-480, 2023 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-36725237

RESUMO

This study identified the anti-depression targets of Kaixin San(KXS) in the brain tissue with "target fishing" strategy, and explored the target-associated pharmacological signaling pathways to reveal the anti-depression molecular mechanism of KXS. The Balb/c mouse model of depression was established by chronic unpredictable mild stress(CUMS) and the anti-depression effect of KXS was evaluated by forced swimming test and sucrose preference test. KXS active components were bonded to the benzophenone-modified magnetic nanoparticles by photocrosslinking reaction for capturing target proteins from cortex, thalamus and hippocampus of depressive mice. The target proteins were identified by liquid chromatography-mass spectrometry/mass spectrometry(LC-MS/MS). The enrichment analysis on signaling pathways was performed by Cytoscape. The potential biological functions of targets were verified by immunohistochemistry and Western blot assay. The results showed that KXS significantly improved the behavioral indexes. There were 64, 91, and 44 potential targets of KXS identified in cortex, thalamus, and hippocampus, respectively, according to the target identification experiment. The functions of these targets were mainly associated with vasopressin-regulated water reabsorption, salmonella infection, thyroid hormone synthesis, and other signaling pathways. Besides, the results of immunohistochemistry and Western blot showed that KXS up-regulated the expressions of argipressine(AVP) in the cortex, heat shock protein 60(HSP60), cytochrome C oxidase 4(COX4), and thyrotropin-releasing hormone(TRH) in the thalamus, and down-regulated the expressions of tumor necrosis factor-α(TNF-α) and nuclear factor kappa B(NF-κB) p65 in the thalamus. Therefore, KXS may exert anti-depression effect through regulating vasopressin signaling pathway in the cortex and inflammation, energy metabolism, and thyroid hormone signaling pathways in the thalamus, and the effect of KXS on hippocampus is not significant.


Assuntos
Depressão , Medicamentos de Ervas Chinesas , Animais , Camundongos , Cromatografia Líquida , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Hipocampo , Estresse Psicológico/tratamento farmacológico , Espectrometria de Massas em Tandem , Depressão/tratamento farmacológico
18.
PeerJ ; 11: e14483, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36643627

RESUMO

Background: Icaritin (ICT) has been previously demonstrated to display protective effects against cerebral ischemic reperfusion (I/R) by inhibiting oxidative stress, but the mechanism remains unclear. This study aimed to explore the mechanism from the perspective of metabolomics. Methods: A mice cerebral artery occlusion/reperfusion (MCAO/R) model was explored to mimic cerebral ischemic reperfusion and protective effect of ICT was assessed by neurologic deficit scoring, infarct volume and brain water content. Ultra-high-performance liquid chromatography electrospray ionization orbitrap tandem mass spectrometry (UHPLC-ESI-QE-Orbitrap-MS) based metabolomic was performed to explore potential biomarkers. Brain tissue metabolic profiles were analyzed and metabolic biomarkers were identified through multivariate data analysis. The protein levels of Nrf2, HO-1 and HQO1 were assayed by western blot. The release of malondialdehyde (MDA) and the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) were detected using corresponding assay kits. Results: The results showed that after ICT treatment, the neurological deficit, cerebral infarction area, brain edema and the level of MDA in brain tissue of MCAO/R mice were significantly reduced. Meanwhile, ICT enhanced the activity of SOD, CAT and GSH-Px. Western blot results confirmed that ICT up-regulated the protein levels of antioxidant-related protein including Nrf2, HO-1 and NQO1. According to the metabolomic profiling of brain tissues, clear separations were observed among the Sham, Model and ICT groups. A total of 44 biomarkers were identified, and the identified biomarkers were mainly related to linoleic acid metabolism, arachidonic acid metabolism, alanine, aspartate and glutamate metabolism, arginine biosynthesis, arginine and proline metabolism, D-glutamine and D-glutamate metabolism, taurine and hypotaurine metabolism and purine metabolism, respectively. At the same time, the inhibitory effect of ICT on arachidonic acid and linoleic acid in brain tissue, as well as the promoting effect on taurine, GABA, NAAG, may be the key factors for the anti-neurooxidative function of mice after MCAO/R injury. Conclusion: Our results demonstrate that ICT has benefits for MCAO/R injury, which are partially related to the suppression of oxidative stress via stimulating the Nrf2 signaling and regulating the production of arachidonic acid, linoleic acid, taurine, GABA, NAAG in brain tissue.


Assuntos
Antioxidantes , Traumatismo por Reperfusão , Animais , Camundongos , Antioxidantes/farmacologia , Ácido Araquidônico , Cromatografia Líquida de Alta Pressão , Ácido gama-Aminobutírico , Ácido Linoleico , Fator 2 Relacionado a NF-E2 , Reperfusão , Traumatismo por Reperfusão/tratamento farmacológico , Superóxido Dismutase/metabolismo , Taurina
19.
Chem Biol Drug Des ; 101(4): 873-882, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36527176

RESUMO

Previous study has shown that icaritin (ICT) has meaningful protective effect on cerebral ischemic stroke, and this study aimed to investigate its mechanism from the aspect of protecting astrocytes from oxidative stress. Murine primary astrocytes were pretreated by ICT and exposed to H2 O2 to induce oxidative stress. The results indicated that ICT inhibited H2 O2 -induced astrocytes apoptosis, decreased Bax and cleaved caspase-3, and increased Bcl-2. In addition, ICT inhibited H2 O2 -induced oxidative stress, increased mitochondrial membrane potential (ΔΨm ), and maintained mitochondrial morphology. ICT decreased the synthesis of malondialdehyde and increased the activity of glutathione peroxidase, catalase, and superoxide dismutase. Moreover, ICT suppressed the transient and resting intracellular Ca2+ overload. Further investigation revealed that ICT could target the combination with Orai1 to block store-operated calcium channel induced by H2 O2 . However, ICT did not enhance the protective effect of RO2959, a selective blocker of Orai1. These results indicate that ICT can play a neuroprotective role against oxidative stress injury by binding to Orai1 to block SOCC.


Assuntos
Astrócitos , Canais de Cálcio , Camundongos , Animais , Canais de Cálcio/metabolismo , Astrócitos/metabolismo , Estresse Oxidativo , Flavonoides/farmacologia , Cálcio/metabolismo , Proteína ORAI1/metabolismo , Proteína ORAI1/farmacologia
20.
J Ethnopharmacol ; 302(Pt A): 115913, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36347302

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Jingfang Granule (JFG) is a Traditional Chinese Medicine prescription to empirically treat skin disease such as urticaria in clinical practice. However, the potential mechanisms of JFG on urticaria are not fully defined. AIM OF STUDY: The aim of this study is to investigate the mechanisms of JFG in treating urticaria through an OVA/aluminum hydroxide induced urticaria mice model. MATERIALS AND METHODS: KM mice were injected intraperitoneally (i.p.) with OVA/aluminium hydroxide to establish the model with urticaria. After the mice were administered JFG, itching degree and hematoxylin and eosin (H&E) staining were used to assess the protective effect of JFG on mice with urticaria. The regulatory networks were investigated by proteomics and central carbon metabolomics. Spleen T lymphocyte subsets were detected by flow cytometry. Peripheral blood cytokines were detected using ELISA kits or Cytometric Bead Array (CBA) kits. The protein expression of skin tissue was detected by western blot or immunohistochemical staining. RESULTS: JFG significantly relived skin tissue lesions and skin pruritus in mice with urticaria. Meanwhile, JFG significantly decreased IgE, IL-1ß, IL-6, IL-4, TNF-α and IL-17A levels and increased IFN-γ levels in the serum of urticaria mice by inhibiting the expression of inflammation associated proteins including TLR4 and p-NF-κB p65, p-ERK1/2, p-JNK and p-p38, NLRP3, ASC and cleaved caspase-1. The results of proteomics, central carbon metabolomics, western blot and immunohistochemical staining confirmed that JFG inhibited Glycolysis/Gluconeogenesis and Pentose phosphate pathway in the skin tissue of urticaria mice by activating the LKB1/AMPK/SIRT1 axis and then downregulating the protein expressions of Glut1, TORC2, p-CREB, PEPCK, HNF4α and G6Pase. CONCLUSION: The current study demonstrates that JFG is effective in treating OVA/aluminum hydroxide-induced skin lesions and inflammation in mice, and JFG exhibits the clinical benefits via modulating LKB1/AMPK/SIRT1 axis, which in turn inhibits Glycolysis/Gluconeogenesis and Pentose phosphate pathway.


Assuntos
Sirtuína 1 , Urticária , Animais , Camundongos , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , NF-kappa B/metabolismo , Transdução de Sinais , Hidróxido de Alumínio/farmacologia , Inflamação/tratamento farmacológico , Carbono , Glucose/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA