RESUMO
Hund's rule, which is powerful in governing the first excited states of closed-shell organic materials, can hardly be violated to get inverted singlet-triplet gap (INVEST) molecules with negative singlet-triplet energy gaps (ΔEST), although INVEST materials have shown extraordinary photophysical properties and promising device performance especially in light-emitting diodes. Here, we propose a facile strategy to construct emissive INVEST molecules by introducing different types of substituents to heptazine in various modes, which can effectively tune the ΔEST to be negative with the enlarged oscillator strength (f) for the high fluorescence rate of the heptazine derivatives. Systematic computational studies show that the double substitution of electron-donating units with another nonconjugated substituent in hybrid substitution mode is the most favorable way in achieving slightly negative ΔEST and large f values; the conjugated substituent will compete with heptazine to make the molecule deviate from the INVEST feature. Especially, a series of high-performance heptazine-based INVEST emitters were constructed, exhibiting ΔEST low to -0.362 eV, f up to 0.0436, as well as a wide range emission color from 339 to 716 nm. Also, the designed molecules were predicted to have fluorescence radiative rates up to 106 s-1, along with efficient reverse intersystem crossing rates reaching 108 s-1. Importantly, the figure of merit (FM) was first proposed as a parameter to wholly evaluate the performance of INVEST emitters, and the highest FM of 0.198 was found in the triazine and double nonconjugated amine-substituted heptazine. These results highlight the great potential of the heptazine chromophore in constructing INVEST emitters, revealing fundamental structure-property understandings for the material design of efficient anti-Hund organic molecules with improved emission properties.
RESUMO
The combination of advanced photoluminescence characteristics to photochromism is highly attractive in preparing high-performance multifunctional photo-responsive materials for optoelectronic applications. However, this is rather challenging in material design owing to the limited mechanism understanding and construction principles. Here, an effective strategy to integrate photochromism and afterglow emission in carbon dots (CDs) is proposed through embedding naphthaleneimide (NI) structure in CDs followed by polyvinylpyrrolidone (PVP) encapsulation. The NI-structured CDs-PVP shows intrinsic photochromism owing to the in situ formation of NI-radical anions and controllable multi-stimuli-responsive afterglow behaviors related to the oxygen-trigged triplet exciton quenching and Förster resonance energy transfer (FRET) from the pristine CDs to the photoactivated CDs radicals. Notably, a wide range of appearance colors from colorless to brown, luminescence color transition from blue to yellow, and much elongated afterglow lifetime up to 253 ms are observed. With the extraordinary stimuli-chromic and stimuli-luminescent CDs-PVP film dynamically responsive to multiple external stimuli, reversible secure snapchat, data encryption/decryption and synaptic imaging recognition are realized. These findings demonstrate a fundamental principle to design multi-stimuli-responsive photochromic CDs with afterglow, providing important understandings on the synergic mechanism of dynamic photochromism and emission behaviors and thereby expanding their applications in advanced information anti-counterfeiting and artificial intelligence.
RESUMO
The development of high-performance metal-free organic X-ray scintillators (OXSTs), characterized by a synergistic combination of robust X-ray absorption, efficient exciton utilization, and short luminescence lifetimes, poses a considerable challenge. Here we present an effective strategy for achieving augmented X-ray scintillation through the utilization of halogenated open-shell organic radical scintillators. Our experimental results demonstrate that the synthesized scintillators exhibit strong X-ray absorption derived from halogen atoms, display efficacious X-ray stability, and theoretically achieve 100% exciton utilization efficiency with a short lifetime (â¼18 ns) due to spin-allowed doublet transitions. The superior X-ray scintillation performance exhibited by these organic radicals is not only exploitable in X-ray radiography for contrast imaging of various objects but also applicable in a medical high-resolution micro-computer-tomography system for the clear visualization of fibrous veins within a bamboo stick. Our study substantiates the promise of organic radicals as prospective candidates for OXSTs, offering valuable insights and a roadmap for the development of advanced organic radical scintillators geared towards achieving high-quality X-ray radiography.
RESUMO
Organic materials with thermally activated delayed fluorescence (TADF) and room-temperature phosphorescence (RTP) dual emission have attracted great attention in recent years, but the regulation mechanism via internal and external heavy atoms is not clear enough. Here, we carry out a systematic theoretical investigation on the photophysical properties of the materials by introducing aliphatic or aromatic bromine atoms. The molecule with aromatic bromine atoms exhibits obvious TADF owing to the effective reverse intersystem crossing (RISC) with matchable energy levels and enhanced spin orbit couplings, the molecule with aliphatic bromine atoms shows a long RTP lifetime because of the reduced nonradiative transition of triplet excitons, and the molecule with both aliphatic and aromatic bromine atoms presents balanced TADF and RTP emissions thanks to the synergy internal and external heavy-atom effects. Besides, the internal and external heavy atoms induce multisite intermolecular interactions, effectively suppressing the nonradiative process in the solid phase. The efficient RISC process and the suppressed nonradiative process of triplet excitons should be key to regulating the dual emission property. These findings and insights are of great importance for revealing the structure-performance relationship, providing theoretical guidance for the design of TADF and RTP dual emission molecules via internal and external heavy-atom effects.
RESUMO
Organic afterglow with long-persistent luminescence (LPL) after photoexcitation is highly attractive, but the realization of narrowband afterglow with small full-width at half-maximum (FWHM) is a huge challenge since it is intrinsically contradictory to the triplet- and solid-state emission nature of organic afterglow. Here, narrow-band, long-lived, and full-color organic LPL is realized by isolating multi-resonant thermally activated delayed fluorescent (MR-TADF) fluorophores in a glassy steroid-type host through a facile melt-cooling treatment. Such prepared host becomes capable of exciton dissociation and recombination (EDR) upon photoirradiation for both long-lived fluorescence and phosphorescence; and, the efficient Förster resonance energy transfer (FRET) from the host to various MR-TADF emitters leads to high-performance LPL, exhibiting small FWHM of 33 nm, long persistent time over 10 s, and facile color-tuning in a wide range from deep-blue to orange (414-600 nm). Moreover, with the extraordinary narrowband LPL and easy processability of the material, centimeter-scale flexible optical waveguide fibers and integrated FWHM/color/lifetime-resolved multilevel encryption/decryption devices have been designed and fabricated. This novel EDR and singlet/triplet-to-singlet FRET strategy to achieve excellent LPL performances illustrates a promising way for constructing flexible organic afterglow with easy preparation methods, shedding valuable scientific insights into the design of narrow-band emission in organic afterglow.
RESUMO
Organic ultralong room temperature phosphorescence (OURTP) materials capable of combining various emission behaviors for diversified optoelectronic properties and applications have recently gained a vigorous development, but it remains a forbidden challenge in designing OURTP molecules with hybrid local and charge-transfer (HLCT) feature, possibly due to the elevated difficulties in simultaneously meeting the stringent requirements of both HLCT and OURTP emitters. Here, through introducing multiple heteroatoms into one-dimensional fused ring of coumarin with moderate charge transfer perturbation in donor-π-acceptor architecture, we demonstrate a HLCT-featured OURTP molecule showing both promoted fluorescence with a quantum yield of 77 % in solution and long-lived OURTP with a lifetime of 251â ms in conventional host material used in electroluminescent device. Thus, efficient OURTP organic light-emitting diodes (OLEDs) were fabricated, exhibiting bright electroluminescence with an exciton utilization efficiency of 85 % and yellow OURTP lasting over 2â s for afterglow. Impressively, the HLCT OURTP-OLEDs can be further optimized to reach an unprecedented total external quantum efficiency (EQE) of ~12 % and OURTP EQE up to 3.11 %, representing the highest performance among the reported OURTP-OLEDs. These impressive results highlight the significance to fuse HLCT and OURTP together in enriching OURTP materials and improving the afterglow OLED performances.
RESUMO
Donor-acceptor (D-A) molecules have drawn massive attention recently in the design of high-performance materials, but the underlying reasons for the magic abilities of D-A architecture in building very different organic semiconductors are still unclear. Here, based on a series of experimentally bipolar host and thermally activated delayed fluorescence (TADF) molecules with the same donor but different acceptor units, it was found that TADF emitters have more effective charge transfer between donor and acceptor units than bipolar host molecules. More efficient conjugation effects between the donor and acceptor units of host materials were identified from the lower dihedral angles of the D-A structure, smaller and even negative charge transfer amount, shorter charge-transfer length, and larger hole-electron overlap extent. These findings with in-depth insights into different interaction models of donor and acceptor units shed important light on the molecular design of TADF emitters and bipolar materials in a D-A architecture.
RESUMO
BACKGROUND: Cutaneous squamous cell carcinoma (cSCC) is one of the most common and fastest increasing forms of cancer worldwide with metastatic potential. Long noncoding RNAs (lncRNAs) are a group of RNA molecules with essential regulatory functions in both physiological and pathological processes. OBJECTIVES: To investigate the function and mode of action of lncRNA plasmacytoma variant translocation 1 (PVT1) in cSCC. METHODS: Quantitative reverse transcriptase polymerase chain reaction and single-molecule in situ hybridization were used to quantify the expression level of PVT1 in normal skin, premalignant skin lesions, actinic keratosis (AK) and primary and metastatic cSCCs. The function of PVT1 in cSCC was investigated both in vivo (tumour xenografts) and in vitro (competitive cell growth assay, 5-ethynyl-2'-deoxyuridine incorporation assay, colony formation assay and tumour spheroid formation assay) upon CRISPR-Cas9-mediated knockout of the entire PVT1 locus, the knockout of exon 2 of PVT1, and locked nucleic acid (LNA) gapmer-mediated PVT1 knockdown. RNA sequencing analysis was conducted to identify genes and processes regulated by PVT1. RESULTS: We identified PVT1 as a lncRNA upregulated in cSCC in situ and cSCC, associated with the malignant phenotype of cSCC. We showed that the expression of PVT1 in cSCC was regulated by MYC. Both CRISPR-Cas9 deletion of the entire PVT1 locus and LNA gapmer-mediated knockdown of PVT1 transcript impaired the malignant behaviour of cSCC cells, suggesting that PVT1 is an oncogenic transcript in cSCC. Furthermore, knockout of PVT1 exon 2 inhibited cSCC tumour growth both in vivo and in vitro, demonstrating that exon 2 is a critical element for the oncogenic role of PVT1. Mechanistically, we showed that PVT1 was localized in the cell nucleus and its deletion resulted in cellular senescence, increased cyclin-dependent kinase inhibitor 1 (p21/CDKN1A) expression and cell cycle arrest. CONCLUSIONS: Our study revealed a previously unrecognized role for exon 2 of PVT1 in its oncogenic role and that PVT1 suppresses cellular senescence in cSCC. PVT1 may be a potential biomarker and therapeutic target in cSCC.
Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Plasmocitoma , RNA Longo não Codificante , Neoplasias Cutâneas , Humanos , Carcinoma de Células Escamosas/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Cutâneas/patologia , Plasmocitoma/genética , Regulação Neoplásica da Expressão Gênica/genética , Éxons , Proliferação de Células/genética , MicroRNAs/metabolismo , Linhagem Celular TumoralRESUMO
Background: Acute-on-chronic hepatitis B liver failure (ACHBLF) is a clinical syndrome with an extremely high mortality. In this study, we aim to evaluate the potential role of serum exosomal long noncoding RNA (lncRNA) growth arrest-specific 5 (GAS5) in ACHBLF and its predictive value for 3-month mortality. Methods: From December 2017 to June 2022, we enrolled 110 patients with ACHBLF and 42 healthy controls (HCs). Exosomes were isolated from the serum of the participants. Serum exosomal lncRNA GAS5 was detected using quantitative real-time polymerase chain reaction (qRT-PCR). The functional role of lncRNA GAS5 on hepatocyte phenotypes was investigated through loss-of-function and gain-of-function assays. Exosomal labeling and cell uptake assay were used to determine the exosomes-mediated transmission of lncRNA GAS5 in hepatocytes in vitro. Results: The serum exosomal lncRNA GAS5 was identified to be an independent predictor for 3-month mortality of ACHBLF. It yielded an area under the receiver operating characteristic curve (AUC) of 0.88, which was significantly higher than MELD score (AUC 0.73; P < 0.01). Further study found that lncRNA GAS5 could inhibit hepatocytes proliferation and increase hepatocytes apoptosis. Exosomes-mediated lncRNA GAS5 transfer promoted hepatocytes injury. The knocked down of lncRNA GAS5 weakened H2O2-induced hepatocytes injury. Conclusion: We revealed that serum exosomal lncRNA GAS5 might promote hepatocytes injury and showed high predictive value for 3-month mortality in ACHBLF.
RESUMO
Multiple resonance thermally activated delayed fluorescence (MR-TADF) materials have attracted increasing attention because of their 100% exciton utilization capability and narrowband emissions. However, it remains a formidable challenge to develop such red materials. Herein, we perform a theoretical investigation on the design of red narrowband TADF materials via manipulating the MR-charge transfer (CT) hybrid proportion by regulating the types of MR cores and peripheral electron-donating units. The results indicate that the MR-CT proportion in the excited states is closely relevant to the frontier molecular orbital (FMO)/hole-electron overlap, which is mainly determined by the dihedral angle between the MR cores and the peripheral units for the MR donor-acceptor molecules. The electron-donating ability of the peripheral substituents has little influence on the FMO/hole-electron overlap. Finally, c1-a and c2-a with red narrowband emissions were revealed. These findings with rich physical insights into the structure-property relationship should provide important clues for designing red narrowband optoelectronic materials.
RESUMO
Cutaneous squamous cell carcinoma (cSCC) is one of the most common types of cancer with metastatic potential. MicroRNAs regulate gene expression at the post-transcriptional level. In this study, we report that miR-23b is downregulated in cSCCs and in actinic keratosis and that its expression is regulated by the MAPK signaling pathway. We show that miR-23b suppresses the expression of a gene network associated with key oncogenic pathways and that the miR-23b-gene signature is enriched in human cSCCs. miR-23b decreased the expression of FGF2 both at mRNA and protein levels and impaired the angiogenesis-inducing ability of cSCC cells. miR23b overexpression suppressed the capacity of cSCC cells to form colonies and spheroids, whereas the CRISPR/Cas9-mediated deletion of MIR23B resulted in increased colony and tumor sphere formation in vitro. In accordance with this, miR-23b-overexpressing cSCC cells formed significantly smaller tumors upon injection into immunocompromised mice with decreased cell proliferation and angiogenesis. Mechanistically, we verify RRAS2 as a direct target of miR-23b in cSCC. We show that RRAS2 is overexpressed in cSCC and that interference with its expression impairs angiogenesis and colony and tumorsphere formation. Taken together, our results suggest that miR-23b acts in a tumor-suppressive manner in cSCC, and its expression is decreased during squamous carcinogenesis.
Assuntos
Carcinoma de Células Escamosas , MicroRNAs , Proteínas Monoméricas de Ligação ao GTP , Neoplasias Cutâneas , Humanos , Animais , Camundongos , Carcinoma de Células Escamosas/genética , Neoplasias Cutâneas/genética , Transdução de Sinais , Carcinogênese , MicroRNAs/genética , Proteínas de MembranaRESUMO
Cutaneous squamous cell carcinoma (cSCC) is a fast-increasing cancer with metastatic potential. Extracellular vesicles (EVs) are small membrane-bound vesicles that play important roles in intercellular communication, particularly in the tumor microenvironment (TME). Here we report that cSCC cells secrete an increased number of EVs relative to normal human epidermal keratinocytes (NHEKs) and that interfering with the capacity of cSCC to secrete EVs inhibits tumor growth in vivo in a xenograft model of human cSCC. Transcriptome analysis of tumor xenografts by RNA-sequencing enabling the simultaneous quantification of both the human and the mouse transcripts revealed that impaired EV-production of cSCC cells prominently altered the phenotype of stromal cells, in particular genes related to extracellular matrix (ECM)-formation and epithelial-mesenchymal transition (EMT). In line with these results, co-culturing of human dermal fibroblasts (HDFs) with cSCC cells, but not with normal keratinocytes in vitro resulted in acquisition of cancer-associated fibroblast (CAF) phenotype. Interestingly, EVs derived from metastatic cSCC cells, but not primary cSCCs or NHEKs, were efficient in converting HDFs to CAFs. Multiplex bead-based flow cytometry assay and mass-spectrometry (MS)-based proteomic analyses revealed the heterogenous cargo of cSCC-derived EVs and that especially EVs derived from metastatic cSCCs carry proteins associated with EV-biogenesis, EMT, and cell migration. Mechanistically, EVs from metastatic cSCC cells result in the activation of TGFß signaling in HDFs. Altogether, our study suggests that cSCC-derived EVs mediate cancer-stroma communication, in particular the conversion of fibroblasts to CAFs, which eventually contribute to cSCC progression.
RESUMO
Nowadays, nano-plastics are widespread in agricultural soils and could be uptaken by crops to cause an increased risk for food safety. As a beneficial element for plants, selenium (Se) can alleviate oxidative damages under various environmental stresses (eg. heavy metals, heat, cold). This study investigated the single and co-applications of nano-size polystyrene (PS) (80 nm and 200 nm) and selenite (0.8 ppm and 5 ppm) in lettuce (Lactuca sativa L.). Results showed nano-PS significantly decreased the root-shoot fresh biomass ratios, inhibited physiological functions in roots and leaves (e.g. root length, chlorophyll content and net photosynthetic rate), as well as stimulated the activities of the antioxidant enzymes in roots and shoots with greater toxicity at the smaller particle size (80 nm). However, both exogenous selenite applications significantly alleviated the above toxic effects of nano-PS in lettuces, especially at a high Se level of 5 ppm. Regression Path Analysis (RPA) revealed that regulation of chlorophyll levels by Se might be a key mechanism for counteracting PS stress in lettuces, which led to the increase in indigenous defense capacity. The present findings provide a novel but safer and cleaner agricultural strategy to alleviate or minimize nano-plastics toxicity in agricultural soils for staple crops and vegetables via application of Se.
RESUMO
Early and differential diagnosis of perihilar cholangiocarcinoma (PHCCA) is highly challenging. This study aimed to evaluate whether volatile organic compounds (VOCs) in bile samples could be emerging diagnostic biomarkers for PHCCA. We collected 200 bile samples from patients with PHCCA and benign biliary diseases (BBD), including a 140-patient training cohort and an 60-patient test cohort. Gas chromatography-ion mobility spectrometry (GC-IMS) was used for VOCs detection. The predictive models were constructed using machine learning algorithms. Our analysis detected 19 VOC substances using GC-IMS in the bile samples and resulted in the identification of three new VOCs, 2-methoxyfuran, propyl isovalerate, and diethyl malonate that were found in bile. Unsupervised hierarchical clustering analysis supported that VOCs detected in the bile could distinguish PHCCA from BBD. Twelve VOCs defined according to 32 signal peaks had significant statistical significance between BBD and PHCCA, including four up-regulated VOCs in PHCCA, such as 2-ethyl-1-hexanol, propyl isovalerate, cyclohexanone, and acetophenone, while the rest eight VOCs were down-regulated. ROC curve analysis revealed that machine learning models based on VOCs could help diagnosing PHCCA. Among them, SVM provided the highest AUC of 0·966, with a sensitivity and specificity of 93·1% and 100%, respectively. The diagnostic model based on different VOC spectra could be a feasible method for the differential diagnosis of PHCCA.
Assuntos
Neoplasias dos Ductos Biliares , Tumor de Klatskin , Compostos Orgânicos Voláteis , Humanos , Tumor de Klatskin/diagnóstico , Compostos Orgânicos Voláteis/análise , Bile/química , Diagnóstico Diferencial , Cromatografia Gasosa-Espectrometria de Massas , Neoplasias dos Ductos Biliares/diagnósticoRESUMO
Humans and other organisms are continuously exposed to thousands of chemicals through the atmosphere, drinking water, food, or direct contact. A large proportion of such chemicals are present in very low concentrations and may have synergistic effects, even at their no-observed-adverse-effect level (NOAEL). Complex mixtures of contaminants are very difficult to assess by traditional toxicological methods. There is increasing attention on how different pollutants induce adverse physiological functions in the human body through effects on the circadian rhythm. However, it is very difficult to screen for compounds with circadian-rhythm-disrupting effects from a large number of chemicals or their complex mixtures. We established a stable firefly luciferase reporter gene knock-in U2-OS cell line by CRISPR/Cas9 to screen circadian-rhythm-disrupting pollutants. The luciferase gene was inserted downstream of the core clock gene BMAL1 and controlled by an endogenous promoter. Compared to detection systems using exogenous promoters, these cells enable the detection of compounds that interfere with the circadian rhythm system mediated by BMAL1 gene expression. The U2-OS knock-in cells showed BMAL1 and luciferase activity had parallel changes when treated with BMAL1 inhibitor and activator. Furthermore, the luciferase reporter gene has high sensitivity and is faster and more cost-effective than classic toxicology methods. The knock-in cell line can be used for high-throughput and efficient screening of circadian-rhythm-disrupting chemicals such as drugs and pollutants.
RESUMO
Lung cancer is the second most common cancer worldwide and the leading cause of cancer death in the world. Therefore, there is an urgent need to develop new and effective biomarkers for diagnosis and treatment. Under this circumstance, human endogenous retroviruses (HERVs) were recently introduced as novel biomarkers for cancer diagnosis. This study focused on the correlation between lung cancer and HERV-K (HML-2) transcription levels. At the cellular level, different types of lung cancer cells and human normal lung epithelial cells were used to analyze the transcription levels of the HERV-K (HML-2) gag, pol, and env genes by RT-qPCR. At the level of lung cancer patients, blood samples with background information from 734 lung cancer patients and 96 healthy persons were collected to analyze the transcription levels of HERV-K (HML-2) gag, pol, and env genes. The results showed that the transcriptional levels of the HERV-K (HML-2) gag, pol, and env genes in lung cancer cells and lung cancer patient blood samples were significantly higher than those in the healthy controls, which was also verified by RNAScope ISH technology. In addition, we also found that there was a correlation between the abnormal transcription levels of HERV-K (HML-2) genes in lung cancer patients and the clinicopathological parameters of lung cancer. We also identified the distribution locations of the gag, pol, and env primer sequences on each chromosome and analyzed the function of these loci. In conclusion, HERV-K (HML-2) genes may be a potential biomarker for the diagnosis of lung cancer.
RESUMO
We estimated the symptomatic, PCR-confirmed secondary attack rate (SAR) for 2,382 close contacts of 476 symptomatic persons with coronavirus disease in Yichang, Hubei Province, China, identified during January 23-February 25, 2020. The SAR among all close contacts was 6.5%; among close contacts who lived with an index case-patient, the SAR was 10.8%; among close-contact spouses of index case-patients, the SAR was 15.9%. The SAR varied by close contact age, from 3.0% for those <18 years of age to 12.5% for those >60 years of age. Multilevel logistic regression showed that factors significantly associated with increased SAR were living together, being a spouse, and being >60 years of age. Multilevel regression did not support SAR differing significantly by whether the most recent contact occurred before or after the index case-patient's onset of illness (p = 0.66). The relatively high SAR for coronavirus disease suggests relatively high virus transmissibility.
Assuntos
COVID-19 , SARS-CoV-2 , Adolescente , Criança , China/epidemiologia , Humanos , Incidência , Modelos LogísticosRESUMO
Human parainfluenza virus type 3 (hPIV-3) entry and intrahost spread through membrane fusion are initiated by two envelope glycoproteins, hemagglutinin-neuraminidase (HN) and fusion (F) protein. Binding of HN protein to the cellular receptor via its receptor-binding sites triggers conformational changes in the F protein leading to virus-cell fusion. However, little is known about the roles of individual amino acids that comprise the receptor-binding sites in the fusion process. Here, residues R192, D216, E409, R424, R502, Y530 and E549 located within the receptor-binding site â , and residues N551 and H552 at the putative site â ¡ were replaced by alanine with site-directed mutagenesis. All mutants except N551A displayed statistically lower hemadsorption activities ranging from 16.4% to 80.2% of the wild-type (wt) level. With standardization of the number of bound erythrocytes, similarly, other than N551A, all mutants showed reduced fusogenic activity at three successive stages: lipid mixing (hemifusion), content mixing (full fusion) and syncytium development. Kinetic measurements of the hemifusion process showed that the initial hemifusion extent for R192A, D216A, E409A, R424A, R502A, Y530A, E549A and H552A was decreased to 69.9%, 80.6%, 71.3%, 67.3%, 50.6%, 87.4%, 84.9% and 25.1%, respectively, relative to the wt, while the initial rate of hemifusion for the E409A, R424A, R502A and H552A mutants was reduced to 69.0%, 35.4%, 62.3%, 37.0%, respectively. In addition, four mutants with reduced initial hemifusion rates also showed decreased percentages of F protein cleavage from 43.4% to 56.3% of the wt. Taken together, Mutants R192A, D216A, E409A, R424A, R502A, Y530A, E549A and H552A may lead to damage on the fusion activity at initial stage of hemifusion, of which decreased extent and rate may be associated with impaired receptor binding activity resulting in the increased activation barrier of F protein and the cleavage of it, respectively.
Assuntos
Proteína HN , Vírus da Parainfluenza 3 Humana , Sítios de Ligação , Proteína HN/genética , Proteína HN/metabolismo , Humanos , Mutagênese Sítio-Dirigida , Vírus da Parainfluenza 3 Humana/genética , Ligação Proteica , Proteínas Virais de Fusão/genética , Internalização do VírusRESUMO
BACKGROUND: Esophageal cancer (EC) is the eighth most common cause of cancer-associated mortality in humans. Recent studies have revealed the important roles of microRNAs (miRs) in mediating tumor initiation and progression. miR-216a has been found to be involved in the progression of EC, but the underlying mechanisms remain largely unknown. The aim of this study is to explore the mechanism of miR-216a and the downstream molecules in esophageal cancer. MATERIALS AND METHODS: The degree of methylation of miR-216a promoter in EC tissues and cell lines was determined with methylation specific polymerase chain reaction (MSP). The levels of miR-216a and HMGB3 in EC cells were quantified by quantitative PCR (qPCR) and Western blot (WB). EC cell lines were treated with DNA methylation inhibitor 5-aza-2'-deoxycytidine (5-AZ), miR-216a mimics, and HMGB3 siRNA to explore the effects of miR-216a and HMGB3 on the proliferation, migration, invasion, and apoptosis of cells. Dual-luciferase reporter assay was employed to verify the binding of miR-216a to the 3'UTR of HMGB2 mRNA. RESULTS: The promoter of MiR-216a was hypermethylated and the expression of miR-216a was down-regulated in EC, while HMGB3 was up-regulated. Dual luciferase reporter assay confirmed the binding of miR-216a to the 3'UTR of HMGB3 mRNA. Demethylated miR-216a and miR-216a mimics elevated miR-216a expression and down-regulated HMGB3, as well as inhibited cell proliferation, migration, and invasion. Inhibiting the expression of HMGB3 played an important role in inducing apoptosis, suppressing cell expansion, and down-regulating the activity of Wnt/ß-catenin pathway. CONCLUSIONS: Hypermethylation in the promoter of miR-216a upregulated HMGB3 and the Wnt/ß-catenin pathway, resulting in enhanced EC progression.
RESUMO
OBJECTIVES: Autoverification systems have greatly improved laboratory efficiency. However, the long-developed rule-based autoverfication models have limitations. The machine learning (ML) algorithm possesses unique advantages in the evaluation of large datasets. We investigated the utility of ML algorithms for developing an artificial intelligence (AI) autoverification system to support laboratory testing. The accuracy and efficiency of the algorithm model were also validated. METHODS: Testing data, including 52 testing items with demographic information, were extracted from the laboratory information system and Roche Cobas® IT 3000 from June 1, 2018 to August 30, 2019. Two rounds of modeling were conducted to train different ML algorithms and test their abilities to distinguish invalid reports. Algorithms with the top three best performances were selected to form the finalized ensemble model. Double-blind testing between experienced laboratory personnel and the AI autoverification system was conducted, and the passing rate and false-negative rate (FNR) were documented. The working efficiency and workload reduction were also analyzed. RESULTS: The final AI system showed a 89.60% passing rate and 0.95 per mille FNR, in double-blind testing. The AI system lowered the number of invalid reports by approximately 80% compared to those evaluated by a rule-based engine, and therefore enhanced the working efficiency and reduced the workload in the biochemistry laboratory. CONCLUSIONS: We confirmed the feasibility of the ML algorithm for autoverification with high accuracy and efficiency.