Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 255: 116206, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38531226

RESUMO

In the detection of biomolecules, surface plasmon resonance (SPR) sensors require high sensitivity. In this study, we propose a sensitivity-enhanced functionalized plasmonic interface based on Ag-TiO2-Co(OH)2 nanosheets structure. Compared to unmodified SPR sensors, the sensitivity of the sensor decorated with TiO2 and Co(OH)2 nanosheets is increased by 130.84%, reaching 5764.27 nm/RIU. This enhancement is attributed to the high refractive index of the coating, as well as the high specific surface area and abundant active sites provided by the synthesized Co(OH)2 nanosheets with a multi-grooved structure. Additionally, employing a double-antibody sandwich method, the antibody-functionalized plasmonic interface enables specific detection of human serum albumin (HSA). The linear response of this sensor was in the wide range of 0.4-150 µM, and the LOD reached 154.89 nM(KD is approximately 1.73 × 10-6 M). This novel SPR sensor offers a new strategy for biochemical sensing and provides a highly sensitive platform for immunoassays.


Assuntos
Técnicas Biossensoriais , Humanos , Ressonância de Plasmônio de Superfície , Refratometria , Anticorpos , Alimentos
2.
ACS Appl Mater Interfaces ; 16(9): 11389-11399, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38388355

RESUMO

Due to the porous structure and high electrical conductivity of carbon materials, lithium-ion batteries (LIBs) frequently employ carbon cladding to modify silicon anodes. However, the high cost and convoluted manufacturing process have prevented widespread use of carbon-based materials. Due to the abundance of seaweed (Gelidium amansii: GAm), there is a developing interest in seaweed's additional uses. We present, for the first time in lithium-ion batteries, the modification of silicon anodes by algal biomass carbon, which was thoroughly analyzed morphologically, structurally, and electrochemically. Seaweed's biomass carbon is porous and highly linked, making it ideal for evenly enclosing silicon nanoparticles and supplying the porous carbon skeleton with sufficient nitrogen after annealing. The Si@ self-encapsulated naturally nitrogen-doped biochar prepared from seaweed composites displayed reversible capacities of 1111.61 mAh g-1 after 500 cycles at a high current of 1 A g-1 and 714.08 mAh g-1 after 1000 cycles at the same current density.

3.
Biosens Bioelectron ; 205: 114115, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35219020

RESUMO

Carbon neutrality is a global green energy revolution meaning that the carbon dioxide can make ends meet. However, with the mushroom of the fifth generation wireless systems (5G) and the Internet of Things (IoT), it is a great challenge for powering the ubiquitous distributed devices, because the battery production and high overhead maintenance may bring more carbon emissions. Here, we present wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators (F-TENG). The F-TENG is made of stretchable conductive fiber (Ecoflex coating with polyaniline (PANI)) and varnished wires. Based on the coupling effect of triboelectric effect and enzymatic reaction (surface-triboelectric coupling effect), the wearable biosensors can not only precisely sense the motion states, but also detect glucose, creatinine and lactate acid in sweat in real-time. Importantly, the wearable devices can self-drive without any external power source and the response against glucose, creatinine and lactate acid can be up to 103%, 125% and 38%, respectively. On this basis, applications in biosensing and wireless communication have been demonstrated. This work exhibits a prospective potential application of F-TENG in IoT for diverse use.


Assuntos
Técnicas Biossensoriais , Dispositivos Eletrônicos Vestíveis , Nanotecnologia , Estudos Prospectivos , Suor
4.
Peptides ; 76: 115-29, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26779986

RESUMO

Little is known about the physiological or pharmacological properties of alarin, a new neuropeptide belonging to the galanin family. We previously showed that alarin has an antidepressant-like effect and is associated with a decrease in the hyperactivity of hypothalamic-pituitary-adrenal (HPA) axis that is observed in patients with depression using unpredictable chronic mild stress (UCMS) mouse model of depression. However, the mechanisms underlying these effects have not been uncovered. Inflammatory cytokines are reportedly associated with depression. Animal studies and cytokine immune therapy in humans suggest that pro-inflammatory cytokines induce depressive symptomatology and potently activate the HPA axis, whereas anti-inflammatory cytokines may decrease activation. Thus, we first determined the levels of inflammatory cytokines in the blood and brain to evaluate whether the antidepressant-like effect of alarin in UCMS-treated mice is related to its regulation of these inflammatory cytokines. Pro-inflammatory cytokines disrupt the function and/or expression of glucocorticoid receptors (GRs), which mediate the negative feedback of glucocorticoids on the HPA axis to keep it from being overactivated. We next explored the expression level of GRs in the brains of mice subjected to UCMS and to the administration of alarin. We found that intracerebroventricular administration of alarin significantly ameliorated depression-like behaviors in the UCMS-treated mice. Alarin restored the UCMS-induced an increase in the levels of the pro-inflammatory cytokines interleukin (IL)-6 and tumor necrosis factor α and a decrease in the anti-inflammatory cytokine IL-10 level in the blood, prefrontal cortex, hippocampus and hypothalamus. Alarin also reversed the UCMS-induced down-regulation of GR expression in these brain regions. Thus, the antidepressant-like effects of alarin may be mediated by restoring altered pro-inflammatory and anti-inflammatory cytokine levels and GR expression to decrease HPA axis hyperactivity. Our findings provide additional knowledge to interpret the pathophysiology of depression.


Assuntos
Antidepressivos/farmacologia , Depressão/tratamento farmacológico , Peptídeo Semelhante a Galanina/farmacologia , Animais , Antidepressivos/administração & dosagem , Encéfalo/metabolismo , Citocinas/genética , Citocinas/metabolismo , Avaliação Pré-Clínica de Medicamentos , Peptídeo Semelhante a Galanina/administração & dosagem , Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA