Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003252

RESUMO

The interaction between integrin α4ß7 and mucosal vascular addressin cell-adhesion molecule-1 (MAdCAM-1) facilitates the adhesion of circulating lymphocytes to the surface of high endothelial venules in inflammatory bowel diseases (IBDs). Lymphocyte adhesion is a multistep cascade involving the tethering, rolling, stable adhesion, crawling, and migration of cells, with integrin α4ß7 being involved in rolling and stable adhesions. Targeting the integrin α4ß7-MAdCAM-1 interaction may help decrease inflammation in IBDs. This interaction is regulated by force; however, the underlying mechanism remains unknown. Here, we investigate this mechanism using a parallel plate flow chamber and atomic force microscopy. The results reveal an initial increase in the lifetime of the integrin α4ß7-MAdCAM-1 interaction followed by a decrease with an increasing force. This was manifested in a two-state curve regulated via a catch-bond-slip-bond conversion regardless of Ca2+ and/or Mg2+ availability. In contrast, the mean rolling velocity of cells initially decreased and then increased with the increasing force, indicating the flow-enhanced adhesion. Longer tether lifetimes of single bonds and lower rolling velocities mediated by multiple bonds were observed in the presence of Mg2+ rather than Ca2+. Similar results were obtained when examining the adhesion to substrates co-coated with chemokine CC motif ligand 25 and MAdCAM-1, as opposed to substrates coated with MAdCAM-1 alone. In conclusion, the integrin α4ß7-MAdCAM-1 interaction occurs via ion- and cytokine-dependent flow-enhanced adhesion processes and is regulated via a catch-bond mechanism.


Assuntos
Imunoglobulinas , Integrinas , Adesão Celular , Imunoglobulinas/química , Linfócitos
2.
Biomolecules ; 13(4)2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-37189336

RESUMO

MAdCAM-1 binds to integrin α4ß7, which mediates the rolling and arrest of circulating lymphocytes upon the vascular endothelia during lymphocytic homing. The calcium response by adhered lymphocytes is a critical event for lymphocyte activation and subsequent arrest and migration under flow. However, whether the interaction of integrin α4ß7 /MAdCAM-1 can effectively trigger the calcium response of lymphocytes remains unclear, as well as whether the fluid force affects the calcium response. In this study, we explore the mechanical regulation of integrin α4ß7-induced calcium signaling under flow. Flou-4 AM was used to examine the calcium response under real-time fluorescence microscopy when cells were firmly adhered to a parallel plate flow chamber. The interaction between integrin α4ß7 and MAdCAM-1 was found to effectively trigger calcium signaling in firmly adhered RPMI 8226 cells. Meanwhile, increasing fluid shear stress accelerated the cytosolic calcium response and enhanced signaling intensity. Additionally, the calcium signaling of RPMI 8226 activated by integrin α4ß7 originated from extracellular calcium influx instead of cytoplasmic calcium release, and the signaling transduction of integrin α4ß7 was involved in Kindlin-3. These findings shed new light on the mechano-chemical mechanism of calcium signaling in RPMI 8226 cells induced by integrin α4ß7.


Assuntos
Cálcio , Integrinas , Cálcio/metabolismo , Sinalização do Cálcio , Integrinas/metabolismo , Linfócitos/metabolismo , Fenômenos Mecânicos , Humanos
3.
Molecules ; 27(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36364276

RESUMO

Bruton's tyrosine kinase (BTK) is a key protein from the TEC family and is involved in B-cell lymphoma occurrence and development. Targeting BTK is therefore an effective strategy for B-cell lymphoma treatment. Since previous studies on BTK have been limited to structure-function analyses of static protein structures, the dynamics of conformational change of BTK upon inhibitor binding remain unclear. Here, molecular dynamics simulations were conducted to investigate the molecular mechanisms of association and dissociation of a reversible (ARQ531) and irreversible (ibrutinib) small-molecule inhibitor to/from BTK. The results indicated that the BTK kinase domain was found to be locked in an inactive state through local conformational changes in the DFG motif, and P-, A-, and gatekeeper loops. The binding of the inhibitors drove the outward rotation of the C-helix, resulting in the upfolded state of Trp395 and the formation of the salt bridge of Glu445-Arg544, which maintained the inactive conformation state. Met477 and Glu475 in the hinge region were found to be the key residues for inhibitor binding. These findings can be used to evaluate the inhibitory activity of the pharmacophore and applied to the design of effective BTK inhibitors. In addition, the drug resistance to the irreversible inhibitor Ibrutinib was mainly from the strong interaction of Cys481, which was evidenced by the mutational experiment, and further confirmed by the measurement of rupture force and rupture times from steered molecular dynamics simulation. Our results provide mechanistic insights into resistance against BTK-targeting drugs and the key interaction sites for the development of high-quality BTK inhibitors. The steered dynamics simulation also offers a means to rapidly assess the binding capacity of newly designed inhibitors.


Assuntos
Linfoma de Células B , Simulação de Dinâmica Molecular , Humanos , Tirosina Quinase da Agamaglobulinemia/metabolismo , Inibidores de Proteínas Quinases/química , Conformação Molecular , Linfoma de Células B/tratamento farmacológico
4.
Front Genet ; 13: 831162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559023

RESUMO

Accumulating evidence indicates that the N6-methyladenosine (m6A) modification plays a critical role in human cancers. Given the current understanding of m6A modification, this process is believed to be dynamically regulated by m6A regulators. Although the discovery of m6A regulators has greatly enhanced our understanding of the mechanism underlying m6A modification in cancers, the function and role of m6A in the context of prostate cancer (PCa) remain unclear. Here, we aimed to establish a comprehensive diagnostic scoring model that can act as a complement to prostate-specific antigen (PSA) screening. To achieve this, we first drew the landscape of m6A regulators and constructed a LASSO-Cox model using three risk genes (METTL14, HNRNP2AB1, and YTHDF2). Particularly, METTL14 expression was found to be significantly related to overall survival, tumor T stage, relapse rate, and tumor microenvironment of PCa patients, showing that it has important prognostic value. Furthermore, for the sake of improving the predictive ability, we presented a comprehensive diagnostic scoring model based on a novel 6-gene panel by combining with genes found in our previous study, and its application potential was further validated by the whole TCGA and ICGC cohorts. Our study provides additional clues and insights regarding the treatment and diagnosis of PCa patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA