Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Imaging Inform Med ; 37(1): 268-279, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38343257

RESUMO

Accurate detection of fibrotic interstitial lung disease (f-ILD) is conducive to early intervention. Our aim was to develop a lung graph-based machine learning model to identify f-ILD. A total of 417 HRCTs from 279 patients with confirmed ILD (156 f-ILD and 123 non-f-ILD) were included in this study. A lung graph-based machine learning model based on HRCT was developed for aiding clinician to diagnose f-ILD. In this approach, local radiomics features were extracted from an automatically generated geometric atlas of the lung and used to build a series of specific lung graph models. Encoding these lung graphs, a lung descriptor was gained and became as a characterization of global radiomics feature distribution to diagnose f-ILD. The Weighted Ensemble model showed the best predictive performance in cross-validation. The classification accuracy of the model was significantly higher than that of the three radiologists at both the CT sequence level and the patient level. At the patient level, the diagnostic accuracy of the model versus radiologists A, B, and C was 0.986 (95% CI 0.959 to 1.000), 0.918 (95% CI 0.849 to 0.973), 0.822 (95% CI 0.726 to 0.904), and 0.904 (95% CI 0.836 to 0.973), respectively. There was a statistically significant difference in AUC values between the model and 3 physicians (p < 0.05). The lung graph-based machine learning model could identify f-ILD, and the diagnostic performance exceeded radiologists which could aid clinicians to assess ILD objectively.

2.
Insights Imaging ; 15(1): 17, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38253739

RESUMO

OBJECTIVE: To assess lung deformation in patients with idiopathic pulmonary fibrosis (IPF) using with elastic registration algorithm applied to three-dimensional ultrashort echo time (3D-UTE) MRI and analyze relationship of lung deformation with the severity of IPF. METHODS: Seventy-six patients with IPF (mean age: 62 ± 6 years) and 62 age- and gender-matched healthy controls (mean age: 58 ± 4 years) were prospectively enrolled. End-inspiration and end-expiration images acquired with a single breath-hold 3D-UTE sequence were registered using elastic registration algorithm. Jacobian determinants were calculated from deformation fields and represented on color maps. Jac-mean (absolute value of the log means of Jacobian determinants) and the Dice similarity coefficient (Dice) were compared between different groups. RESULTS: Compared with healthy controls, the Jac-mean of IPF patients significantly decreased (0.21 ± 0.08 vs. 0.27 ± 0. 07, p < 0.001). Furthermore, the Jac-mean and Dice correlated with the metrics of pulmonary function tests and the composite physiological index. The lung deformation in IPF patients with dyspnea Medical Research Council (MRC) ≥ 3 (Jac-mean: 0.16 ± 0.03; Dice: 0.06 ± 0.02) was significantly lower than MRC1 (Jac-mean: 0. 25 ± 0.03, p < 0.001; Dice: 0.10 ± 0.01, p < 0.001) and MRC 2 (Jac-mean: 0.22 ± 0.11, p = 0.001; Dice: 0.08 ± 0.03, p = 0.006). Meanwhile, Jac-mean and Dice correlated with health-related quality of life, 6 min-walk distance, and the extent of pulmonary fibrosis. Jac-mean correlated with pulmonary vascular-related indexes on high-resolution CT. CONCLUSION: The decreased lung deformation in IPF patients correlated with the clinical severity of IPF patients. Elastic registration of inspiratory-to-expiratory 3D UTE MRI may be a new morphological and functional marker for non-radiation and noninvasive evaluation of IPF. CRITICAL RELEVANCE STATEMENT: This prospective study demonstrated that lung deformation decreased in idiopathic pulmonary fibrosis (IPF) patients and correlated with the severity of IPF. Elastic registration of inspiratory-to-expiratory three-dimensional ultrashort echo time (3D UTE) MRI may be a new morphological and functional marker for non-radiation and noninvasive evaluation of IPF. KEY POINTS: • Elastic registration of inspiratory-to-expiratory three-dimensional ultrashort echo time (3D UTE) MRI could evaluate lung deformation. • Lung deformation significantly decreased in idiopathic pulmonary fibrosis (IPF) patients, compared with the healthy controls. • Reduced lung deformation of IPF patients correlated with worsened pulmonary function and the composite physiological index (CPI).

3.
J Thorac Imaging ; 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37732685

RESUMO

PURPOSE: To quantitatively analyze lung elasticity in idiopathic pulmonary fibrosis (IPF) using elastic registration based on 3-dimensional pulmonary magnetic resonance imaging (3D-PMRI) and to assess its' correlations with the severity of IPF patients. MATERIAL AND METHODS: Thirty male patients with IPF (mean age: 62±6 y) and 30 age-matched male healthy controls (mean age: 62±6 y) were prospectively enrolled. 3D-PMRI was acquired with a 3-dimensional ultrashort echo time sequence in end-inspiration and end-expiration. MR images were registered from end-inspiration to end-expiration with the elastic registration algorithm. Jacobian determinants were calculated from deformation fields on color maps. The log means of the Jacobian determinants (Jac-mean) and Dice similarity coefficient were used to describe lung elasticity between 2 groups. Then, the correlation of lung elasticity with dyspnea Medical Research Council (MRC) score, exercise tolerance, health-related quality of life, lung function, and the extent of pulmonary fibrosis on chest computed tomography were analyzed. RESULTS: The Jac-mean of IPF patients (-0.19, [IQR: -0.22, -0.15]) decreased (absolute value), compared with healthy controls (-0.28, [IQR: -0.31, -0.24], P<0.001). The lung elasticity in IPF patients with dyspnea MRC≥3 (Jac-mean: -0.15; Dice: 0.06) was significantly lower than MRC 1 (Jac-mean: -0.22, P=0.001; Dice: 0.10, P=0.001) and MRC 2 (Jac-mean: -0.21, P=0.007; Dice: 0.09, P<0.001). In addition, the Jac-mean negatively correlated with forced vital capacity % (r=-0.487, P<0.001), forced expiratory volume 1% (r=-0.413, P=0.004), TLC% (r=-0.488, P<0.001), diffusing capacity of the lungs for carbon monoxide % predicted (r=-0.555, P<0.001), 6-minute walk distance (r=-0.441, P=0.030) and positively correlated with respiratory symptoms (r=0.430, P=0.042). Meanwhile, the Dice similarity coefficient positively correlated with forced vital capacity % (r=0.577, P=0.004), forced expiratory volume 1% (r=0.526, P=0.012), diffusing capacity of the lungs for carbon monoxide % predicted (r=0.435, P=0.048), 6-minute walk distance (r=0.473, P=0.016), final peripheral oxygen saturation (r=0.534, P=0.004), the extent of fibrosis on chest computed tomography (r=-0.421, P=0.021) and negatively correlated with activity (r=-0.431, P=0.048). CONCLUSION: Lung elasticity decreased in IPF patients and correlated with dyspnea, exercise tolerance, health-related quality of life, lung function, and the extent of pulmonary fibrosis. The lung elasticity based on elastic registration of 3D-PMRI may be a new nonradiation imaging biomarker for quantitative evaluation of the severity of IPF.

4.
J Cancer Res Clin Oncol ; 149(15): 13511-13521, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37498395

RESUMO

PURPOSE: As a rare type of tumor, the metastasis pattern of large cell neuroendocrine carcinoma (LCNEC) is still unclear. Our aim was to investigate metastatic patterns and develop a predictive model of prognosis in patients with advanced LCNEC. METHODS: Patients of LCNEC diagnosed between 2010-2015 from the Surveillance, Epidemiology and End Results (SEER) database were retrospectively included. Chi-square test was used for baseline characteristics analysis. Survival differences were assessed using Kaplan-Meier curves. Independent prognostic factors identified by multivariate Cox proportional risk model were used for the construction of nomogram. RESULTS: 557 eligible patients with metastasis LCNEC (median (IQR), 64 (56 to 72) years; 323 males) were included in this research. Among patients with isolated metastases, brain metastases had the highest incidence (29.4%), and multisite metastases had worse OS (HR: 2.020: 95% CI 1.413-2.888; P < 0.001) and LCSS (HR: 2.144, 95% CI 1.480-3.104; P < 0.001) in all age groups. Independent prognostic indicators including age, race, T stage, N stage, chemotherapy, radiotherapy and metastatic site were used for the construction of nomogram. Concordance index (C-index) and decision-curve analyses (DCAs) showed higher accuracy and net clinical benefit of nomogram compared to the 7th TNM staging system (OS: 0.692 vs 0.555; P < 0.001; LCSS: 0.693 vs 0.555; P < 0.001). CONCLUSIONS: We firstly established a novel comprehensive nomogram to predict the prognosis of metastasis LCNEC. The prognostic model demonstrated excellent accuracy and predictive performance. Chemotherapy and metastasis pattern were the two strongest predictive variables. Close follow-up of patients with LCNEC is necessary to make individualized treatment decisions according to different metastasis patterns.

5.
Quant Imaging Med Surg ; 13(4): 2397-2407, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37064367

RESUMO

Background: Pulmonary cement embolism (PCE) caused by cement leakage is one of the complications of percutaneous vertebroplasty (PVP) or percutaneous kyphoplasty (PKP). The aim of our study was to explore the imaging features on computed tomography (CT) and analyze the risk factors of PCE in patients with a vertebral compression fracture to compare the incidences of PCE caused by PVP and PKP. Methods: In this single-center, retrospective study, 373 patients (96 males and 277 females; mean age 76.2±9.4 years) from January 2017 to December 2020 who underwent PVP or PKP for treatment of vertebral compression fracture in the China-Japan Friendship Hospital were retrospectively included. Their clinical data were recorded, and their postprocedural chest CT scans were reviewed and evaluated for PCE. Results: Of the 373 patients, 258 patients underwent PVP while the other 115 underwent PKP. PCE was found on the postprocedural chest CT scans in 64 patients (17.2%), including 47 patients with PVP and 17 patients with PKP. The incidence of PCE of PVP and PKP was similar (χ2=0.660; P=0.460). The typical CT findings of PCE were multiple linear or branching radiopaque densities in pulmonary arteries. The upper lobes of bilateral lungs were the most frequently involved. In addition, postprocedural chest CT demonstrated that 103 cases had cement emboli in the azygos vein, and 8 cases had cement emboli in the inferior vena cava. Binary logistic regression analysis demonstrated that PVP or PKP in the T9 vertebra [odds ratio (OR) =4.222; 95% CI: 1.490-11.966] and cement emboli in the azygos vein (OR =7.647; 95% CI: 3.937-14.856) or the inferior vena cava (OR =42.701; 95% CI: 7.525-242.302) were the risk factors of PCE. Conclusions: The incidence of PCE during PVP or PKP was 17.2%. Postprocedural chest CT clearly showed PCE as branching hyperdense or radiopaque lesions confined within the pulmonary artery courses. PVP or PKP in the T9 vertebra and cement emboli in the azygos vein or the inferior vena cava were risk factors for PCE.

6.
Quant Imaging Med Surg ; 13(3): 1488-1498, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36915349

RESUMO

Background: To clarify whether dynamic quantification of variables derived from chest high-resolution computed tomography (HRCT) can assess the progression of idiopathic pulmonary fibrosis (IPF). Methods: Patients with IPF who underwent serial computed tomography (CT) imaging were retrospectively enrolled. Several structural abnormalities seen on HRCT in IPF were segmented and quantified. Patients were divided into 2 groups according to their pulmonary function test (PFT) results: those with disease stabilization and those with disease progression, and differences between the groups were analyzed. Results: There were no statistically significant differences between the 2 patient groups for the following parameters: baseline PFTs, total lesion extent, lesion extent at different sites in the lungs, and pulmonary vessel-related parameters (with P values ranging from 0.057 to 0.894). Median changes in total lung volume, total lesion volume, and total lesion ratio were significantly higher in patients with worsening disease compared with those with stable disease (P<0.001). There was a significant increase in total lesion volume of 214.73 mL [interquartile range (IQR), 68.26 to 501.46 mL] compared with 3.67 mL (IQR, -71.70 to 85.33 mL) in the disease progression group compared with the disease stability group (P=0.001). The decline in pulmonary vessel volume and number of pulmonary vessel branches was more pronounced in the group with functional worsening compared with the group with functional stability. Moreover, changes in lesion volume ratio were negatively correlated with changes in diffusing capacity of the lungs for carbon monoxide (DLco) during follow-up (R=-0.57, P<0.001), and changes in pulmonary vessel-related parameters demonstrated positive correlation with DLco (with R ranging from 0.27 to 0.53, P<0.001) and forced vital capacity (FVC) (with R ranging from 0.44 to 0.61, P<0.001). Conclusions: Changes in CT-related parameters during follow-up may have better predictive performance compared with baseline imaging parameters and PFTs for disease progression in IPF.

7.
Thromb J ; 21(1): 17, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765371

RESUMO

BACKGROUND: Studies on the incidence of venous thromboembolism (VTE) events in patients with interstitial lung disease (ILD) are limited and the results are inconsistent. The aim of this research was to investigate the incidence and risk factors of VTE in ILD during hospitalization. MATERIALS AND METHODS: In this retrospective, cross-sectional, observational study, a total of 5009 patients diagnosed with ILD from January 2016 to March 2022 in our hospital were retrospectively included. In ILD patients, VTE including pulmonary thromboembolism (PTE) and deep vein thrombosis (DVT) were screened from the electronic medical record system. Diagnosis of PTE and DVT were performed by CT pulmonary angiography (CTPA), CTV or ultrasound. And then the incidence and risk factors of VTE in different types of ILD were assessed. RESULTS: Among 5009 patients with ILD, VTE was detected in 129 (2.6%) patients, including 15(0.3%) patients with both PTE and DVT, 34 (0.7%) patients with PTE and 80 (1.6%) patients with DVT. 85.1% of patients with APE were in the intermediate-low risk group. The incidence of VTE in Anti-Neutrophil Cytoplasmic Antibodies -associated vasculitis related ILD (ANCA-AV-ILD), hypersensitivity pneumonitis and idiopathic pulmonary fibrosis (IPF) respectively was 7.9% and 3.6% and 3.5%. In patients with connective tissue disease-associated ILD (CTD-ILD), the incidence of VTE, DVT, PTE, combined PTE and DVT respectively was 3.0%, 2.3%, 0.4% and 0.3%. Among the various risk factors, different ILD categories, age ≥ 80 years (OR 4.178, 95% CI 2.097-8.321, P < 0.001), respiratory failure (OR 2.382, 95% CI 1.533-3.702, P < 0.001) and varicose veins (OR 3.718, 95% CI 1.066-12.964, P = 0.039) were independent risk factors of VTE. The incidence of VTE in patients with ILD increased with the length of time in hospital from 2.2% (< 7 days) to 6.4% (> 21 days). CONCLUSION: The incidence of VTE during hospitalization in ILD patients was 2.6%, with a 1.6% incidence of DVT, higher than the 0.7% incidence of PTE. Advanced age, ILD categories, respiratory failure and varicose veins as independent risk factors for the development of VTE should be closely monitored.

8.
Eur Radiol ; 33(4): 2279-2288, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36424500

RESUMO

OBJECTIVES: Evaluation and follow-up of idiopathic pulmonary fibrosis (IPF) mainly rely on high-resolution computed tomography (HRCT) and pulmonary function tests (PFTs). The elastic registration technique can quantitatively assess lung shrinkage. We aimed to investigate the correlation between lung shrinkage and morphological and functional deterioration in IPF. METHODS: Patients with IPF who underwent at least two HRCT scans and PFTs were retrospectively included. Elastic registration was performed on the baseline and follow-up HRCTs to obtain deformation maps of the whole lung. Jacobian determinants were calculated from the deformation fields and after logarithm transformation, log_jac values were represented on color maps to describe morphological deterioration, and to assess the correlation between log_jac values and PFTs. RESULTS: A total of 69 patients with IPF (male 66) were included. Jacobian maps demonstrated constriction of the lung parenchyma marked at the lung base in patients who were deteriorated on visual and PFT assessment. The log_jac values were significantly reduced in the deteriorated patients compared to the stable patients. Mean log_jac values showed positive correlation with baseline percentage of predicted vital capacity (VC%) (r = 0.394, p < 0.05) and percentage of predicted forced vital capacity (FVC%) (r = 0.395, p < 0.05). Additionally, the mean log_jac values were positively correlated with pulmonary vascular volume (r = 0.438, p < 0.01) and the number of pulmonary vascular branches (r = 0.326, p < 0.01). CONCLUSIONS: Elastic registration between baseline and follow-up HRCT was helpful to quantitatively assess the morphological deterioration of lung shrinkage in IPF, and the quantitative indicator log_jac values were significantly correlated with PFTs. KEY POINTS: • The elastic registration on HRCT was helpful to quantitatively assess the deterioration of IPF. • Jacobian logarithm was significantly reduced in deteriorated patients and mean log_jac values were correlated with PFTs. • The mean log_jac values were related to the changes of pulmonary vascular volume and the number of vascular branches.


Assuntos
Fibrose Pulmonar Idiopática , Pulmão , Humanos , Masculino , Estudos Retrospectivos , Pulmão/diagnóstico por imagem , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Capacidade Vital
9.
J Clin Med ; 11(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36555894

RESUMO

Objective: We aimed to quantitatively study the characteristic of diaphragm and chest wall motion using free-breathing dynamic magnetic resonance imaging (D-MRI) in Chinese people with normal lung function. Methods: 74 male subjects (mean age, 37 ± 11 years old) were prospectively enrolled, and they underwent high-resolution CT(HRCT), pulmonary functional tests (PFTs), and D-MRI in the same day. D-MRI was acquired with a gradient-echo sequence during the quiet and deep breathing. The motion of the diaphragm and chest wall were respectively assessed by measuring thoracic anteroposterior diameter (AP), left−right diameter (LR), cranial−caudal diameter (CC), and thoracic area ratios between end-inspiration and end-expiration. The effect of age, body mass index (BMI), and smoking on respiratory muscle function was also analyzed. Results: The mean ratio of right and left AP was greater than that of LR on three transversal planes during both quiet and deep breathing. The mean ratio at the anterior diaphragm (AND, Quiet: 1.04 ± 0.03; Deep: 1.15 ± 0.09) was weaker than that of the apex (vs. APD, Quiet: 1.08 ± 0.05, p < 0.001; Deep: 1.29 ± 0.12, p < 0.001) and posterior diaphragm (vs. POD, Quiet: 1.09 ± 0.04, p < 0.001; Deep: 1.30 ± 0.12, p < 0.001) both in quiet and deep breathing. Compared with non-smokers, the left AP and thoracic area ratios in smokers were significantly decreased (p < 0.05). However, the ratios of AP, LR, CC, and thoracic area on each plane were similar among groups in different age and BMI. Conclusions: During both quiet and deep breathing, the chest wall motion is prominent in the anteroposterior direction. The motions of diaphragm apex and posterior diaphragm were more prominent than that of the anterior diaphragm. Smoking may affect the respiratory muscle mobility. Dynamic MRI can quantitatively evaluate the motion of respiratory muscles.

10.
J Clin Med ; 11(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36555938

RESUMO

OBJECTIVE: Current studies focus on the prevalence rate of lung cancer in idiopathic pulmonary fibrosis and connective tissue disease-associated interstitial lung disease (CTD-LID). Our aim was to investigate the prevalence of malignancies in patients with various subtypes of ILD. METHODS: A total of 5350 patients diagnosed with ILD between January 2015 and December 2021 were retrospectively included. The prevalence of different malignancies and different ILDs was assessed using complete follow-up data. RESULTS: A total of 248 patients (139 males; 65-IQR, 57 to 72-years) out of 5350 patients with ILD were confirmed with malignancies. A total of 69% of patients with ILD and malignances were older than 60 years old. The prevalence of malignancies in ILD patients was 4.6%, and lung cancer had the most common incidence of 1.9%, followed by malignancies in the digestive system of 0.9%. Among the different ILD subtypes, the prevalence of malignancies such as organizing pneumonia (OP), idiopathic pulmonary fibrosis (IPF), anti-neutrophil cytoplasmic antibodies-associated vasculitis-related ILD(AAV-ILD), nonspecific interstitial pneumonia (NSIP), CTD-ILD, hypersensitivity pneumonitis (HP), sarcoidosis, and other types of ILD was 6.8%, 5.0%, 4.7%, 4.3%, 2.5%, 2.2%, 1.2%, and 6.9%, respectively. The incidence of lung cancer as the most common tumor in IPF was 3.9%, with adenocarcinoma predominating (1.7%). The highest rate of malignancy occurring in RA of CTD-ILD was 2.4%. CONCLUSION: Older patients with ILD (≥60 years) including OP, IPF, AAV-ILD, NSIP, CTD-ILD, and HP, were associated with a higher incidence of malignancy, especially males aged from 60 to 69 years. These epidemiological results indicate that it is essential for physicians to pay more attention to the screening of and management strategies for different malignancies, according to the specific ILD subtypes.

11.
Front Med (Lausanne) ; 9: 955125, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425108

RESUMO

Objectives: We sought to evaluate the prognostic value of blood routine parameters and biochemical parameters, especially inflammation-related biomarkers, and establish an inflammation-related prognostic model in Chinese patients with idiopathic pulmonary fibrosis (IPF). Material/methods: Patients diagnosed as IPF at Beijing Chaoyang Hospital and aged 40 years and older were consecutively enrolled from June 2000 to March 2015, and finally, a total of 377 patients were enrolled in the derivation cohort. The follow-up ended in December 2016. We used Cox proportional hazard model to calculate the hazard ratio (HR) and establish the prognostic model. The discrimination and calibration of the prognostic model were evaluated in an independent validation cohort enrolled from China-Japan Friendship Hospital between January 2015 and December 2019. Results: Multivariate analysis revealed that patients with elevated monocyte-to-red blood cell count ratio (MRR) and monocyte counts showed increased risk of mortality. The clinical-physiological-biomarker (CPB) index and CPB stage we established in this study were a significant predictor, and the C-index for CPB index and CPB stage in the validation cohort was 0.635 (95% CI: 0.558-0.712) and 0.619 (95% CI: 0.544-0.694), respectively. Patients in CPB stage III had the poorest survival. Conclusion: We developed and validated a new inflammation-related prognostic model (CPB index and CPB stage) which was integration of age, gender, FVC (%, predicted), DLCO (%, predicted), Charlson Comorbidity Index, and blood monocyte counts. This prediction model exhibited strong ability in predicting mortality in Chinese patients with IPF.

12.
Front Oncol ; 12: 963884, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249030

RESUMO

Background: How to evaluate the prognosis and develop overall treatment strategies of metachronous bilateral breast cancer (MBBC) remains confused in clinical. Here, we investigated the correlation between clonal evolution and clinical characteristics of MBBC; we aim to establish a novel prognostic model in these patients. Methods: The data from Surveillance, Epidemiology, and End Results (SEER) database and the First Hospital of Jilin University were analyzed for breast cancer-specific cumulative mortality (BCCM) by competing risk model. Meanwhile, whole-exome sequencing was applied for 10 lesions acquired at spatial-temporal distinct regions of five patients from our own hospital to reconstruct clonal evolutionary characteristics of MBBC. Then, dimensional-reduction (DR) cumulative incidence function (CIF) curves of MBBC features were established on different point in diagnostic interval time, to build a novel DR nomogram. Results: Significant heterogeneity in genome and clinical features of MBBC was widespread. The mutational diversity of contralateral BC (CBC) was significantly higher than that in primary BC (PBC), and the most effective prognostic MATH ratio was significantly correlated with interval time (R 2 = 0.85, p< 0.05). In SEER cohort study (n = 13,304), the interval time was not only significantly affected the BCCM by multivariate analysis (p< 0.000) but determined the weight of clinical features (T/N stage, grade and ER status) on PBC and CBC in prognostic evaluation. Thus, clinical parameters after DR based on interval time were incorporated into the nomogram for prognostic predicting BCCM. Concordance index was 0.773 (95% CI, 0.769-0.776) in training cohort (n = 8,869), and 0.819 (95% CI, 0.813-0.826) in validation cohort (n = 4,435). Conclusions: Bilateral heterogeneous characteristics and interval time were determinant prognostic factors of MBBC. The DR prognostic nomogram may help clinicians in prognostic evaluation and decision making.

13.
Quant Imaging Med Surg ; 12(8): 4176-4189, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35919053

RESUMO

Background: We aimed to evaluate the image quality, feasibility, and diagnostic performance of three-dimensional ultrashort echo time magnetic resonance imaging (3D UTE-MRI) to assess idiopathic pulmonary fibrosis (IPF) compared with high-resolution computed tomography (HRCT) and half-Fourier single-shot turbo spin-echo (HASTE) MRI. Methods: A total of 36 patients with IPF (34 men; mean age: 62±8 years, age range: 43 to 78 years) were prospectively included and underwent HRCT and chest MRI on the same day. Chest MRI was performed with a free-breathing 3D spiral UTE pulse sequence and HASTE sequence on a 1.5 T MRI. Two radiologists independently evaluated the image quality of the HRCT, HASTE, and 3D UTE-MRI. They assessed the representative imaging features of IPF, including honeycombing, reticulation, traction bronchiectasis, and ground-glass opacities. Image quality of the 3D UTE-MRI, HASTE, and HRCT were assessed using a 5-point visual scoring method. Kappa and weighted kappa analysis were used to measure intra- and inter-observer and inter-method agreements. Sensitivity (SE), specificity (SP), and accuracy (AC) were used to assess the performance of 3D UTE-MRI for detecting image features of IPF and monitoring the extent of pulmonary fibrosis. Linear regressions and Bland-Altman plots were generated to assess the correlation and agreement between the assessment of the extent of pulmonary fibrosis made by the 2 observers. Results: The image quality of HRCT was higher than that of HASTE and UTE-MRI (HRCT vs. UTE-MRI vs. HASTE: 4.9±0.3 vs. 4.1±0.7 vs. 3.0±0.3; P<0.001). Interobserver agreement of HRCT, HASTE, and 3D UTE-MRI when assessing pulmonary fibrosis was substantial and excellent (HRCT: 0.727≤ κ ≤1, P<0.001; HASTE: 0.654≤ κ ≤1, P<0.001; 3D UTE-MRI: 0.719≤ κ ≤0.824, P<0.001). In addition, reticulation (SE: 97.1%; SP: 100%; AC: 97.2%; κ =0.654), honeycombing (SE: 83.3%; SP: 100%; AC: 86.1%; κ =0.625) patterns, and traction bronchiectasis (SE: 94.1%; SP: 100%; AC: 94.4%, κ =0.640) were also well-visualized on 3D UTE-MRI, which was significantly superior to HASTE. Compared with HRCT, the sensitivity of 3D UTE-MRI to detect signs of pulmonary fibrosis (n=35) was 97.2%. The interobserver agreement in elevation of the extent of pulmonary fibrosis with HRCT and 3D UTE-MRI was R2=0.84 (P<0.001) and R2=0.84 (P<0.001), respectively. The extent of pulmonary fibrosis assessed with 3D UTE-MRI [median =9, interquartile range (IQR): 6.25 to 10.00] was lower than that from HRCT (median =12, IQR: 9.25 to 13.00; U=320.00, P<0.001); however, they had a positive correlation (R=0.72, P<0.001). Conclusions: As a radiation-free non-contrast enhanced imaging method, although the image quality of 3D UTE-MRI is inferior to that of HRCT, it has high reproducibility to identify the imaging features of IPF and evaluate the extent of pulmonary fibrosis.

14.
Quant Imaging Med Surg ; 12(7): 3655-3665, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35782232

RESUMO

Background: The quantitative analysis of high-resolution computed tomography (HRCT) is increasingly being used to quantify the severity and evaluate the prognosis of disease. Our aim was to quantify the HRCT features of idiopathic pulmonary fibrosis (IPF) and identify their association with pulmonary function tests. Methods: This was a retrospective, single-center, clinical research study. Patients with IPF were retrospectively included. Pulmonary segmentation was performed using the deep learning-based method. Radiologists manually segmented 4 findings of IPF, including honeycombing (HC), reticular pattern (RE), traction bronchiectasis (TRBR), and ground glass opacity (GGO). Pulmonary vessels were segmented with the automatic integration segmentation method. All segmentation results were quantified by the corresponding segmentation software. Correlations between the volume of the 4 findings on HRCT, volume of the lesions at different sites, pulmonary vascular-related parameters, and pulmonary function tests were analyzed. Results: A total of 101 IPF patients (93 males) with a median age of 63 years [interquartile range (IQR), 58 to 68 years] were included in this study. Total lesion extent demonstrated a stronger negative correlation with diffusion capacity for carbon monoxide (DLco) compared to HC, RE, and TRBR [total lesion ratio, correlation coefficient (r) =-0.67, P<0.001; HC, r=-0.45, P<0.001; RE, r=-0.41, P<0.001; TRBR, r=-0.25, P<0.05, respectively]. Correlations with lung function were similar among various lesion sites with r from -0.38 to -0.61 (P<0.001). Pulmonary artery volume (PAV) displayed a slightly increased positive association with the DLco compared to total pulmonary vascular volume (PVV); for PAV, r=0.41 and P<0.001 and for total PVV, r=0.36 and P<0.001. Additionally, total lesion extent, HC, and RE indicated a negative relationship with vascular-related parameters, and the strength of the correlations was independent of lesion site. Conclusions: Quantitative analysis of HRCT features of IPF indicated a decline in function and an aggravation of vascular destruction with increasing lesion extent. Furthermore, a positive correlation between vascular-related parameters and pulmonary function was confirmed. This co-linearity indicated the potential of vascular-related parameters as new objective markers for evaluating the severity of IPF.

15.
Clin Respir J ; 16(5): 380-393, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35514033

RESUMO

BACKGROUND: Metastatic non-small cell lung cancer (NSCLC) is mostly seen in older patients and is associated with poor prognosis. There is no reliable method to predict the prognosis of elderly patients (≥60 years old) with metastatic NSCLC. The aim of our study was to develop and validate nomograms which accurately predict survival in this group of patients. METHODS: NSCLC patients diagnosed between 2010 and 2015 were all identified from the Surveillance, Epidemiology, and End Results (SEER) database. Nomograms were constructed by significant clinicopathological variables (p < 0.05) selected in multivariate Cox analysis regression. RESULTS: A total of 9584 patients met the inclusion criteria and were randomly allocated in the training (n = 6712) and validation (n = 2872) cohorts. In training cohort, independent prognostic factors included age, gender, race, grade, tumor site, pathology, T stage, N stage, radiotherapy, surgery, chemotherapy, and metastatic site (p < 0.05) for lung cancer-specific survival (LCSS) and overall survival (OS) were identified by the Cox regression. Nomograms for predicting 1-, 2-, and 3-years LCSS and OS were established and showed excellent predictive performance with a higher C-index than that of the 7th TNM staging system (LCSS: training cohort: 0.712 vs. 0.534; p < 0.001; validation cohort: 0.707 vs. 0.528; p < 0.001; OS: training cohort: 0.713 vs. 0.531; p < 0.001; validation cohort: 0.710 vs. 0.528; p < 0.001). The calibration plots showed good consistency from the predicted to actual survival probabilities both in training cohort and validation cohort. Moreover, the decision curve analysis (DCA) achieved better net clinical benefit compared with TNM staging models. CONCLUSIONS: We established and validated novel nomograms for predicting LCSS and OS in elderly patients with metastatic NSCLC with desirable discrimination and calibration ability. These nomograms could provide personalized risk assessment for these patients and assist in clinical decision.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Idoso , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Nomogramas , Prognóstico , Programa de SEER
16.
Clin Respir J ; 16(1): 5-12, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35080130

RESUMO

INTRODUCTION: Lung transplantation has proven to be an effective treatment option for end-stage lung disease. However, early and late complications following transplantation remain significant causes of high mortality. OBJECTIVES: In this review, we focus on the time of onset in primary graft dysfunction and rejection complications, as well as emphasize the role of imaging manifestations and pathological features in early diagnosis, thus assisting clinicians in the early detection and treatment of posttransplant complications and improving patient quality of life and survival. DATA SOURCE: We searched electronic databases such as PubMed, Web of Science, and EMBASE. We used the following search terms: lung transplantation complications, primary graft dysfunction, acute rejection, chronic lung allograft dysfunction, radiological findings, and diagnosis and treatment. CONCLUSION: Primary graft dysfunction, surgical complications, immune rejection, infections, and neoplasms represent major posttransplant complications. As the main posttransplant survival limitation, chronic lung allograft dysfunction has a characteristic imaging presentation; nevertheless, the clinical and imaging manifestations are often complex and overlap, so it is essential to understand the temporal evolution of these complications to narrow the differential diagnosis for early treatment to improve prognosis.


Assuntos
Transplante de Pulmão , Qualidade de Vida , Rejeição de Enxerto/diagnóstico , Humanos , Pulmão , Transplante de Pulmão/efeitos adversos , Transplante Homólogo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA