Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Transplant ; 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38878865

RESUMO

Cold and ischemia/reperfusion (IR)-associated injuries are seemingly inevitable during liver transplantation and hepatectomy. As Syrian hamsters demonstrate intrinsic tolerance to transplantation-like stimuli, cross-species comparative metabolomic analyses were conducted with hamster, rat and donor liver samples to seek hepatic cold and IR-adaptive mechanisms. Lower hepatic phosphocholine contents were found in early graft-dysfunctioned recipients with virus-caused cirrhosis or high MELD scores (≥30). Choline/phosphocholine deficiency in cultured human THLE-2 hepatocytes and animal models weakened hepatocellular cold tolerance and recovery of glutathione and ATP production, which was rescued by phosphocholine supplements. Among the biological processes impacted by choline/phosphocholine deficiency, three lipid-related metabolic processes were downregulated, whilst phosphocholine elevated the expression of genes in methylation processes. Consistently, in THLE-2, phosphocholine enhanced the overall RNA m6A methylation, among which the transcript stability of Fatty acid desaturase 6 (FADS6) was improved. FADS6 functioned as a key phosphocholine effector in the production of polyunsaturated fatty acids, which may facilitate the hepatocellular recovery of energy and redox homeostasis. Thus, our study reveals the choline-phosphocholine metabolism and its downstream FADS6 functions in hepatic adaptation to cold and IR, which may inspire new strategies to monitor donor liver quality and improve recipient recovery from the LT process.

2.
Front Vet Sci ; 11: 1396993, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38818495

RESUMO

The objective of this study was to evaluate the effects of exogenous non-starch polysaccharidases (a mixture of cellulase, xylanase, ß-glucanase and mannanase) on the growth performance and nutrient digestibility, rumen fermentation, and rumen microflora of sheep. The animal trial was conducted using 36 5-month-old female fattening hybrid sheep (Duolang♂ × Hu♀) who were randomly assigned into four groups comprising nine sheep per treatment: CON, T1, T2, and T3, with 0, 0.1, 0.3, and 0.5% NSPases/kg DM of TMR, respectively. This complex enzyme product was screened for optimal ratios based on previous in vitro tests and responded positively to the in vitro fermentation of the TMR. When treated with NSPases, there was a non-linear effect of average daily gain and feed conversion rate, with the greatest improvement observed in the T2 group. There were no significant differences (p > 0.05) in nutrient intake or apparent digestibility among the NSPase-supplemented groups. In addition, T2 group had a significantly higher acetate to propionate ratio and pH (p < 0.05) than the other groups, and NH3-N and microbial protein concentrations showed a quadratic curve. The results revealed that both immunoglobulins and serum hormones increased linearly with addition (p < 0.05). As the T2 group showed the best growth performance, the CON and T2 groups were subjected to rumen metagenomic analysis. The results showed higher abundance of bacteria and lower abundance of Viruses in the rumen microbiota of the T2 group compared to the CON group. In addition, Uroviricota and Proteobacteria abundance was significantly lower in the T2 group than in the CON group at the phylum level (p < 0.05). These results suggest that the supplementation of high-concentrate rations with NSPases enhance immunity, reduces virus abundance in the rumen, improves rumen health, and promotes rumen fermentation. Our findings provide novel insights for improving growth performance and alleviating inflammatory responses arising from high concentrate feeding patterns in ruminants. However, the biological mechanisms cannot be elucidated by exploring the composition of rumen microbe alone, and further studies are required.

3.
Cell Rep ; 42(8): 112984, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37578861

RESUMO

Inadequate remnant volume and regenerative ability of the liver pose life-threatening risks to patients after partial liver transplantation (PLT) or partial hepatectomy (PHx), while few clinical treatments focus on safely accelerating regeneration. Recently, we discovered that supplementing 5-aminolevulinate (5-ALA) improves liver cold adaptation and functional recovery, leading us to uncover a correlation between 5-ALA metabolic activities and post-PLT recovery. In a mouse 2/3 PHx model, 5-ALA supplements enhanced liver regeneration, promoting infiltration and polarization of anti-inflammatory macrophages via P53 signaling. Intriguingly, chemokine receptor CX3CR1 functions to counterbalance these effects. Genetic ablation or pharmacological inhibition of CX3CR1 (AZD8797; phase II trial candidate) augmented the macrophagic production of insulin-like growth factor 1 (IGF-1) and subsequent hepatocyte growth factor (HGF) production by hepatic stellate cells. Thus, short-term treatments with both 5-ALA and AZD8797 demonstrated pro-regeneration outcomes superior to 5-ALA-only treatments in mice after PHx. Overall, our findings may inspire safe and effective strategies to better treat PLT and PHx patients.


Assuntos
Fator de Crescimento Insulin-Like I , Regeneração Hepática , Animais , Camundongos , Ácido Aminolevulínico/farmacologia , Proliferação de Células , Modelos Animais de Doenças , Hepatócitos/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Fígado/metabolismo , Regeneração Hepática/fisiologia
4.
Infect Agent Cancer ; 18(1): 2, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650583

RESUMO

BACKGROUND: Recent studies have proved that tenofovir disoproxil fumarate (TDF) is associated with a lower risk of hepatocellular carcinoma (HCC) occurrence in chronic hepatitis B (CHB) patients and HCC recurrence in patients who underwent hepatectomy when compared to ETV. However, it is unclear whether TDF and ETV treatment, which are both recommended as first-line antiviral agents to prevent the hepatitis B (HBV) recurrence after liver transplantation (LT), are associated with equivalent prognosis. We aim to compare risk of HCC recurrence and survival of patients recieving TDF or ETV after LT for HBV-related HCC. METHOD: We performed a retrospective study including 316 patients who received treatment with ETV or TDF after LT for HBV-related HCC from 2015 January to 2021 Augest. The Recurrence-free survival (RFS) and overall survival (OS) of TDF and ETV groups were analyzed and compared by propensity score-matched (PSM), multivariable Cox regression analysis, competing risk analysis, sensitivity analyses and subgroup analyses. RESULT: Compared with ETV, TDF therapy was associated with significantly higher RFS rates in the entire cohort (P < 0.01), PSM cohort (P < 0.01) and beyond-Milan cohort (P < 0.01). By multivariable analysis, TDF group was associated with significantly lower rates of HCC recurrence (HR, 0.33; 95%CI, 0.14-0.75; P < 0.01). In subgroup analyses, the similar results were observed in patients with following tumor characteristics: Maximum diameter plus number of viable tumor ≥ 5, with MIV or MAT, AFP at LT ≥ 20 ng/ml, and well or moderate tumor grade. CONCLUSION: Tenofovir decrease risk of HBV-Related Hepatocellular Carcinoma recurrence after liver transplantation compared to Entecavir.

5.
Theranostics ; 12(6): 2908-2927, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401816

RESUMO

Rationale: Hibernating thirteen-lined ground squirrels (GS; Ictidomys tridecemlineatus) are naturally adapted to prolonged periods of ultraprofound hypothermia (body temperature < 5 ºC) during torpor, and drastic oscillations of body temperature and ischemia/reperfusion-like stress during their short euthermic interbout arousals. Thus, their superior adaptability may hold tremendous promise for the advancement of donor organ cold preservation and subsequent organ transplantation. However, bridging hibernation research and translational medicine has been impeded by a dearth of in vitro research tools, till the recent establishment of the GS induced pluripotent stem cells (iPSCs). In this study, we reported the generation of functional hepatocyte-like cells (HLCs) from GS iPSCs. As temperature and oxygen supply affect cellular metabolism, we hypothesized that the GS HLCs can metabolically counter drastic temperature and oxygen supply changes. Differentially regulated metabolites can be evaluated and included into the preservation solution to mitigate temperature and ischemia/reperfusion-associated damage to donor livers. Methods: A protocol has been developed to produce GS iPSCs-derived HLCs. Comparative metabolomic analysis on GS HLCs and human donor liver samples revealed changes in metabolites caused by cold storage and rewarming. Human embryonic stem cell (ESC)-derived HLCs and ex vivo cold preservation and reperfusion of isolated rat livers were used to assess candidate metabolites that may have protective effects against preservation-related injuries. Results: GS iPSCs were efficiently differentiated into expandable, cryopreservation-compatible and functional HLCs. Metabolomic analysis unveiled distinct changes of mitochondrial metabolites between GS and human cells following cold storage and rewarming. GS and human HLC-based experiments indicated that the metabolism of 5-aminolevulinate (5-ALA) is key to restricting free radical production during rewarming. Survival of human HLCs was significantly increased following cold exposure and rewarming, as supplemented 5-ALA enhanced Complex III activity and improved mitochondrial respiration. Further, 5-ALA mitigated damage in rat livers following 48-h cold preservation and ex vivo reperfusion. Metabolomic and transcriptomic analyses revealed that supplemented 5-ALA promoted both anabolic and catabolic activities while alleviating cell death, inflammation, hypoxia and other stress responses in isolated perfused rat livers. Conclusion: In the liver, rewarming from ultraprofound hypothermia imposes complex metabolic challenges and stresses on the mitochondria. Metabolites such as 5-ALA can help alleviate mitochondrial stress. Supplementing 5-ALA to the liver preservation solution can substantially improve the functional recovery of rat livers following prolonged cold preservation, rewarming and reperfusion.


Assuntos
Hipotermia , Transplante de Fígado , Ácido Aminolevulínico/farmacologia , Animais , Sobrevivência Celular , Criopreservação/métodos , Humanos , Hipotermia/metabolismo , Isquemia , Fígado/metabolismo , Doadores Vivos , Oxigênio/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA