Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Biochem Biophys ; 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878099

RESUMO

Diabetic nephropathy (DN) is a serious microvascular complication of diabetes characterized by structural and functional changes of kidneys. Human renal tubular epithelial (HK-2) cells are important for kidney recovery post injury and usually used for establishment of DN cell models. The study explored the role of microRNA (miR)-133a-3p in DN cell model and animal model. A cell model for DN was established via high glucose (HG) stimulation to HK-2 cells. Cell viability and apoptotic rate were measured by cell counting kit 8 and flow cytometry. Polymerase chain reaction was performed to quantify levels of miR-133a-3p and targets. Luciferase reporter assay was conducted to verify the binding of miR-133a-3p and MAML1. After establishment of a mouse model of DN, levels of renal function indicators were measured by biochemical analysis. Hematoxylin-eosin and periodic acid-schiff staining of kidney samples were performed to analyze histological changes. Western blotting was conducted to quantify levels of apoptotic markers, MAML1, and factors related to Notch signaling. Results showed that HG induced HK-2 cell apoptosis and the reduction of cell viability. MiR-133a-3p was lowly expressed in HG-stimulated HK-2 cells. Overexpressed miR-133a-3p improved HK-2 cell injury by increasing cell viability and hampering apoptosis under HG condition. In addition, miR-133a-3p directly targets MAML1 3'-untranslated region. MAML1 overexpression countervailed the repressive impact of miR-133a-3p on cell apoptosis in the context of HG. Moreover, miR-133a-3p inhibited the activity of Notch pathway by downregulating MAML1. MiR-133a-3p inhibits DN progression in mice, as evidenced by reduced fasting blood glucose level, improved levels of renal function parameters, and alleviation of kidney atrophy. In conclusion, miR-133a-3p improves HG-induced HK-2 cell injury and inhibits DN progression by targeting MAML1 and inactivating Notch signaling.

2.
BMC Med Inform Decis Mak ; 24(1): 36, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317140

RESUMO

INTRODUCTION: Chronic kidney disease-mineral and bone disorder (CKD-MBD) is characterized by bone abnormalities, vascular calcification, and some other complications. Although there are diagnostic criteria for CKD-MBD, in situations when conducting target feature examining are unavailable, there is a need to investigate and discover alternative biochemical criteria that are easy to obtain. Moreover, studying the correlations between the newly discovered biomarkers and the existing ones may provide insights into the underlying molecular mechanisms of CKD-MBD. METHODS: We collected a cohort of 116 individuals, consisting of three subtypes of CKD-MBD: calcium abnormality, phosphorus abnormality, and PTH abnormality. To identify the best biomarker panel for discrimination, we conducted six machine learning prediction methods and employed a sequential forward feature selection approach for each subtype. Additionally, we collected a separate prospective cohort of 114 samples to validate the discriminative power of the trained prediction models. RESULTS: Using machine learning under cross validation setting, the feature selection method selected a concise biomarker panel for each CKD-MBD subtype as well as for the general one. Using the consensus of these features, best area under ROC curve reached up to 0.95 for the training dataset and 0.74 for the perspective dataset, respectively. DISCUSSION/CONCLUSION: For the first time, we utilized machine learning methods to analyze biochemical criteria associated with CKD-MBD. Our aim was to identify alternative biomarkers that could serve not only as early detection indicators for CKD-MBD, but also as potential candidates for studying the underlying molecular mechanisms of the condition.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Insuficiência Renal Crônica , Humanos , Distúrbio Mineral e Ósseo na Doença Renal Crônica/diagnóstico , Estudos Prospectivos , Biomarcadores , Cálcio , Insuficiência Renal Crônica/diagnóstico
3.
IET Nanobiotechnol ; 14(6): 465-469, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32755955

RESUMO

Cisplatin treatment results in acute kidney injury (AKI) by the phosphorylation of mixed lineage kinase domain-like protein (MLKL). The knockout of MLKL, which is a principle mediator of necroptosis, is believed to alleviate the AKI symptoms. The present study was aimed to improve the therapeutic efficacy in AKI. For this purpose, miR-500a-3P was identified as appropriate miRNA therapeutics and loaded in liposome delivery carrier. The authors have showed that the miR-LIP directly controls the expression of RIPK3 and MLKL - a modulator of necroptosis and thereby reduces the severity of kidney injury. The miR-LIP significantly controlled the phosphorylation of MLKL compared to that of CDDP-treated HK2 cells. Similar results are observed with RIPK3. The miR-LIP has also been demonstrated to control the inflammatory response in tubular cells. Western blot analysis further revealed that the phosphorylation of P-65 was mainly responsible for the inflammatory response and miR-LIP significantly decreased the CDDP-induced NF-kB phosphorylation. Overall, the present study explored the molecular mechanism behind the necroptosis in AKI and potential of miRNA in targeting MLKL pathways. Study further highlights the potential advantage of liposome as a delivery carrier for miRNA therapeutics.


Assuntos
Injúria Renal Aguda , Cisplatino/toxicidade , Lipossomos , MicroRNAs , Modelos Biológicos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular , Técnicas de Inativação de Genes , Humanos , Lipossomos/química , Lipossomos/farmacologia , MicroRNAs/química , MicroRNAs/farmacologia , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA