Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Nucleic Acids Res ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39225044

RESUMO

Proteolysis-targeting chimera (PROTAC) is an emerging therapeutic technology that leverages the ubiquitin-proteasome system to target protein degradation. Due to its event-driven mechanistic characteristics, PROTAC has the potential to regulate traditionally non-druggable targets. Recently, AI-aided drug design has accelerated the development of PROTAC drugs. However, the rational design of PROTACs remains a considerable challenge. Here, we present an updated online database, PROTAC-DB 3.0. In this third version, we have expanded the database to include 6111 PROTACs (87% increase compared to the 2.0 version). Additionally, the database now contains 569 warheads (small molecules targeting the protein), 2753 linkers, and 107 E3 ligands (small molecules recruiting E3 ligases). The number of target-PROTAC-E3 ternary complex structures has also increased to 959. Recognizing the importance of druggability in PROTAC design, we have incorporated pharmacokinetic data to PROTAC-DB 3.0. To enhance user experience, we have added features for sorting based on molecular similarity and literature publication date. PROTAC-DB 3.0 is accessible at http://cadd.zju.edu.cn/protacdb/.

2.
J Chem Inf Model ; 64(16): 6432-6449, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39118363

RESUMO

Major histocompatibility complex (MHC) plays a vital role in presenting epitopes (short peptides from pathogenic proteins) to T-cell receptors (TCRs) to trigger the subsequent immune responses. Vaccine design targeting MHC generally aims to find epitopes with a high binding affinity for MHC presentation. Nevertheless, to find novel epitopes usually requires high-throughput screening of bulk peptide database, which is time-consuming, labor-intensive, more unaffordable, and very expensive. Excitingly, the past several years have witnessed the great success of artificial intelligence (AI) in various fields, such as natural language processing (NLP, e.g., GPT-4), protein structure prediction and engineering (e.g., AlphaFold2), and so on. Therefore, herein, we propose a deep reinforcement-learning (RL)-based generative algorithm, RLpMIEC, to quantitatively design peptide targeting MHC-I systems. Specifically, RLpMIEC combines the energetic spectrum (namely, the molecular interaction energy component, MIEC) based on the peptide-MHC interaction and the sequence information to generate peptides with strong binding affinity and precise MIEC spectra to accelerate the discovery of candidate peptide vaccines. RLpMIEC performs well in all the generative capability evaluations and can generate peptides with strong binding affinities and precise MIECs and, moreover, with high interpretability, demonstrating its powerful capability in participation for accelerating peptide-based vaccine development.


Assuntos
Peptídeos , Peptídeos/química , Aprendizado Profundo , Antígenos de Histocompatibilidade Classe I/química , Antígenos de Histocompatibilidade Classe I/metabolismo , Antígenos de Histocompatibilidade Classe I/imunologia , Ligação Proteica , Algoritmos
3.
J Chem Inf Model ; 64(17): 6899-6911, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39172502

RESUMO

Cyclin-dependent kinases (CDKs), including CDK12 and CDK13, play crucial roles in regulating the cell cycle and RNA polymerase II activity, making them vital targets for cancer therapies. SR4835 is a selective inhibitor of CDK12/13, showing significant potential for treating triple-negative breast cancer. To elucidate the selective mechanism of SR4835 among three CDKs (CDK13/12/9), we developed an innovative enhanced sampling method, integrated well-tempered metadynamics-umbrella sampling (IMUS). IMUS synergistically combines the comprehensive pathway exploration capability of well-tempered metadynamics (WT-MetaD) with the precise free energy calculation capability of umbrella sampling, enabling the efficient and accurate characterization of drug-target interactions. The accurate calculation of binding free energy and the detailed analysis of the kinetic mechanism of the drug-target interaction using IMUS successfully elucidate the drug selectivity mechanism targeting the three CDKs, showing that the selectivity is primarily arising from differences in the stability of H-bonds within the Hinge region of the kinases and the interaction patterns during the protein-ligand recognition process. These findings also underscore the utility of IMUS in efficiently and accurately capturing drug-target interaction processes with clear mechanisms.


Assuntos
Quinases Ciclina-Dependentes , Simulação de Dinâmica Molecular , Inibidores de Proteínas Quinases , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Humanos , Termodinâmica , Conformação Proteica , Antineoplásicos/farmacologia , Antineoplásicos/química
4.
J Chem Inf Model ; 64(13): 5016-5027, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38920330

RESUMO

The intricate interaction between major histocompatibility complexes (MHCs) and antigen peptides with diverse amino acid sequences plays a pivotal role in immune responses and T cell activity. In recent years, deep learning (DL)-based models have emerged as promising tools for accelerating antigen peptide screening. However, most of these models solely rely on one-dimensional amino acid sequences, overlooking crucial information required for the three-dimensional (3-D) space binding process. In this study, we propose TransfIGN, a structure-based DL model that is inspired by our previously developed framework, Interaction Graph Network (IGN), and incorporates sequence information from transformers to predict the interactions between HLA-A*02:01 and antigen peptides. Our model, trained on a comprehensive data set containing 61,816 sequences with 9051 binding affinity labels and 56,848 eluted ligand labels, achieves an area under the curve (AUC) of 0.893 on the binary data set, better than state-of-the-art sequence-based models trained on larger data sets such as NetMHCpan4.1, ANN, and TransPHLA. Furthermore, when evaluated on the IEDB weekly benchmark data sets, our predictions (AUC = 0.816) are better than those of the recommended methods like the IEDB consensus (AUC = 0.795). Notably, the interaction weight matrices generated by our method highlight the strong interactions at specific positions within peptides, emphasizing the model's ability to provide physical interpretability. This capability to unveil binding mechanisms through intricate structural features holds promise for new immunotherapeutic avenues.


Assuntos
Aprendizado Profundo , Antígeno HLA-A2 , Peptídeos , Antígeno HLA-A2/química , Antígeno HLA-A2/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Humanos , Ligação Proteica , Modelos Moleculares , Sequência de Aminoácidos , Conformação Proteica
5.
Acta Pharmacol Sin ; 45(9): 1978-1991, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38750073

RESUMO

Prostate cancer (PCa) is the second most prevalent malignancy among men worldwide. The aberrant activation of androgen receptor (AR) signaling has been recognized as a crucial oncogenic driver for PCa and AR antagonists are widely used in PCa therapy. To develop novel AR antagonist, a machine-learning MIEC-SVM model was established for the virtual screening and 51 candidates were selected and submitted for bioactivity evaluation. To our surprise, a new-scaffold AR antagonist C2 with comparable bioactivity with Enz was identified at the initial round of screening. C2 showed pronounced inhibition on the transcriptional function (IC50 = 0.63 µM) and nuclear translocation of AR and significant antiproliferative and antimetastatic activity on PCa cell line of LNCaP. In addition, C2 exhibited a stronger ability to block the cell cycle of LNCaP than Enz at lower dose and superior AR specificity. Our study highlights the success of MIEC-SVM in discovering AR antagonists, and compound C2 presents a promising new scaffold for the development of AR-targeted therapeutics.


Assuntos
Antagonistas de Receptores de Andrógenos , Proliferação de Células , Neoplasias da Próstata , Receptores Androgênicos , Humanos , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/química , Receptores Androgênicos/metabolismo , Proliferação de Células/efeitos dos fármacos , Masculino , Linhagem Celular Tumoral , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Antineoplásicos/farmacologia , Antineoplásicos/química , Aprendizado de Máquina , Relação Estrutura-Atividade , Ciclo Celular/efeitos dos fármacos
6.
Chin J Nat Med ; 22(1): 75-88, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38278561

RESUMO

NAD(P)H: quinone oxidoreductase 1 (NQO1) is a flavin protease highly expressed in various cancer cells. NQO1 catalyzes a futile redox cycle in substrates, leading to substantial reactive oxygen species (ROS) production. This ROS generation results in extensive DNA damage and elevated poly (ADP-ribose) polymerase 1 (PARP1)-mediated consumption of nicotinamide adenine dinucleotide (NAD+), ultimately causing cell death. Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD+ salvage synthesis pathway, emerges as a critical target in cancer therapy. The concurrent inhibition of NQO1 and NAMPT triggers hyperactivation of PARP1 and intensive NAD+ depletion. In this study, we designed, synthesized, and assessed a novel series of proqodine A derivatives targeting both NQO1 and NAMPT. Among these, compound T8 demonstrated potent antitumor properties. Specifically, T8 selectively inhibited the proliferation of MCF-7 cells and induced apoptosis through mechanisms dependent on both NQO1 and NAMPT. This discovery offers a promising new molecular entity for advancing anticancer research.


Assuntos
NAD , Nicotinamida Fosforribosiltransferase , Humanos , NAD/metabolismo , Linhagem Celular Tumoral , Espécies Reativas de Oxigênio/metabolismo , Nicotinamida Fosforribosiltransferase/genética , Nicotinamida Fosforribosiltransferase/metabolismo , Citocinas/metabolismo , Quinonas , Oxirredutases
7.
J Chem Inf Model ; 63(23): 7529-7544, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37983966

RESUMO

It is well-known that the potency of a drug is heavily associated with its kinetic and thermodynamic properties with the target. Nuclear receptors (NRs), as an important target family, play important roles in regulating a variety of physiological processes in vivo. However, it is hard to understand the drug-NR interaction process because of the closed structure of the ligand-binding domain (LBD) of the NR proteins, which apparently hinders the rational design of drugs with controllable kinetic properties. Therefore, understanding the underlying mechanism of the ligand-NR interaction process seems necessary to help NR drug design. However, it is usually difficult for experimental approaches to interpret the kinetic process of drug-target interactions. Therefore, in silico methods were utilized to explore the optimal binding/dissociation pathways of the NR ligands. Specifically, farnesoid X receptor (FXR) is considered here as the target system since it has been an important target for the treatment of bile acid metabolism-associated diseases, and a series of structures cocrystallized with diverse scaffold ligands were resolved. By using random acceleration molecular dynamics (RAMD) simulation and umbrella sampling (US), 5 main dissociation pathways (pathways I-V) were identified in 11 representative FXR ligands, with most of them (9/11) preferring to go through Pathway III and the remaining two favoring escaping from Pathway I and IV. Furthermore, key residues functioning in the three main dissociation pathways were revealed by the kinetic residue energy analysis (KREA) based on the US trajectories, which may serve as road-marker residues for rapid identification of the (un)binding pathways of FXR ligands. Moreover, the preferred pathways explored by RAMD simulations are in good agreement with the minimum free energy path identified by the US simulations with the Pearson R = 0.76 between the predicted binding affinity and the experimental data, suggesting that RAMD is suitable for applying in large-scale (un)binding-pathway exploration in the case of ligands with obscure binding tunnels to the target.


Assuntos
Simulação de Dinâmica Molecular , Receptores Citoplasmáticos e Nucleares , Ligantes , Ligação Proteica , Termodinâmica
8.
Nat Chem Biol ; 19(12): 1480-1491, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37322158

RESUMO

Hyperactivated glycolysis is a metabolic hallmark of most cancer cells. Although sporadic information has revealed that glycolytic metabolites possess nonmetabolic functions as signaling molecules, how these metabolites interact with and functionally regulate their binding targets remains largely elusive. Here, we introduce a target-responsive accessibility profiling (TRAP) approach that measures changes in ligand binding-induced accessibility for target identification by globally labeling reactive proteinaceous lysines. With TRAP, we mapped 913 responsive target candidates and 2,487 interactions for 10 major glycolytic metabolites in a model cancer cell line. The wide targetome depicted by TRAP unveils diverse regulatory modalities of glycolytic metabolites, and these modalities involve direct perturbation of enzymes in carbohydrate metabolism, intervention of an orphan transcriptional protein's activity and modulation of targetome-level acetylation. These results further our knowledge of how glycolysis orchestrates signaling pathways in cancer cells to support their survival, and inspire exploitation of the glycolytic targetome for cancer therapy.


Assuntos
Fenômenos Bioquímicos , Neoplasias , Humanos , Glicólise , Neoplasias/metabolismo , Transdução de Sinais , Linhagem Celular
9.
Research (Wash D C) ; 6: 0170, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342628

RESUMO

Anaplastic lymphoma kinase (ALK), a tyrosine receptor kinase, has been proven to be associated with the occurrence of numerous malignancies. Although there have been already at least 3 generations of ALK inhibitors approved by FDA or in clinical trials, the occurrence of various mutations seriously attenuates the effectiveness of the drugs. Unfortunately, most of the drug resistance mechanisms still remain obscure. Therefore, it is necessary to reveal the bottom reasons of the drug resistance mechanisms caused by the mutations. In this work, on the basis of verifying the accuracy of 2 main kinds of binding free energy calculation methodologies [end-point method of Molecular Mechanics with Poisson-Boltzmann/Generalized Born and Surface Area (MM/PB(GB)SA) and alchemical method of Thermodynamic Integration (TI)], we performed a systematic analysis on the ALK systems to explore the underlying shared and specific drug resistance mechanisms, covering the one-drug-multiple-mutation and multiple-drug-one-mutation cases. Through conventional molecular dynamics (cMD) simulation in conjunction with MM/PB(GB)SA and umbrella sampling (US) in conjunction with contact network analysis (CNA), the resistance mechanisms of the in-pocket, out-pocket, and multiple-site mutations were revealed. Especially for the out-pocket mutation, a possible transfer chain of the mutation effect was revealed, and the reason why different drugs exhibited various sensitivities to the same mutation was also uncovered. The proposed mechanisms may be prevalent in various drug resistance cases.

10.
JACS Au ; 3(6): 1775-1789, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37388700

RESUMO

Proteolysis-targeting chimeras (PROTACs), which can selectively induce the degradation of target proteins, represent an attractive technology in drug discovery. A large number of PROTACs have been reported, but due to the complicated structural and kinetic characteristics of the target-PROTAC-E3 ligase ternary interaction process, the rational design of PROTACs is still quite challenging. Here, we characterized and analyzed the kinetic mechanism of MZ1, a PROTAC that targets the bromodomain (BD) of the bromodomain and extra terminal (BET) protein (Brd2, Brd3, or Brd4) and von Hippel-Lindau E3 ligase (VHL), from the kinetic and thermodynamic perspectives of view by using enhanced sampling simulations and free energy calculations. The simulations yielded satisfactory predictions on the relative residence time and standard binding free energy (rp > 0.9) for MZ1 in different BrdBD-MZ1-VHL ternary complexes. Interestingly, the simulation of the PROTAC ternary complex disintegration illustrates that MZ1 tends to remain on the surface of VHL with the BD proteins dissociating alone without a specific dissociation direction, indicating that the PROTAC prefers more to bind with E3 ligase at the first step in the formation of the target-PROTAC-E3 ligase ternary complex. Further exploration of the degradation difference of MZ1 in different Brd systems shows that the PROTAC with higher degradation efficiency tends to leave more lysine exposed on the target protein, which is guaranteed by the stability (binding affinity) and durability (residence time) of the target-PROTAC-E3 ligase ternary complex. It is quite possible that the underlying binding characteristics of the BrdBD-MZ1-VHL systems revealed by this study may be shared by different PROTAC systems as a general rule, which may accelerate rational PROTAC design with higher degradation efficiency.

11.
J Chem Inf Model ; 63(11): 3319-3327, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37184885

RESUMO

In the past few years, a number of machine learning (ML)-based molecular generative models have been proposed for generating molecules with desirable properties, but they all require a large amount of label data of pharmacological and physicochemical properties. However, experimental determination of these labels, especially bioactivity labels, is very expensive. In this study, we analyze the dependence of various multi-property molecule generation models on biological activity label data and propose Frag-G/M, a fragment-based multi-constraint molecular generation framework based on conditional transformer, recurrent neural networks (RNNs), and reinforcement learning (RL). The experimental results illustrate that, using the same number of labels, Frag-G/M can generate more desired molecules than the baselines (several times more than the baselines). Moreover, compared with the known active compounds, the molecules generated by Frag-G/M exhibit higher scaffold diversity than those generated by the baselines, thus making it more promising to be used in real-world drug discovery scenarios.


Assuntos
Descoberta de Drogas , Redes Neurais de Computação , Descoberta de Drogas/métodos , Aprendizado de Máquina , Modelos Moleculares
12.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36578163

RESUMO

Understanding drug selectivity mechanism is a long-standing issue for helping design drugs with high specificity. Designing drugs targeting cyclin-dependent kinases (CDKs) with high selectivity is challenging because of their highly conserved binding pockets. To reveal the underlying general selectivity mechanism, we carried out comprehensive analyses from both the thermodynamics and kinetics points of view on a representative CDK12 inhibitor. To fully capture the binding features of the drug-target recognition process, we proposed to use kinetic residue energy analysis (KREA) in conjunction with the community network analysis (CNA) to reveal the underlying cooperation effect between individual residues/protein motifs to the binding/dissociating process of the ligand. The general mechanism of drug selectivity in CDKs can be summarized as that the difference of structural cooperation between the ligand and the protein motifs leads to the difference of the energetic contribution of the key residues to the ligand. The proposed mechanisms may be prevalent in drug selectivity issues, and the insights may help design new strategies to overcome/attenuate the drug selectivity associated problems.


Assuntos
Quinases Ciclina-Dependentes , Simulação de Dinâmica Molecular , Quinases Ciclina-Dependentes/metabolismo , Ligantes , Ligação Proteica , Termodinâmica
13.
J Med Chem ; 65(18): 12482-12496, 2022 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-36065998

RESUMO

Many deep learning (DL)-based molecular generative models have been proposed to design novel molecules. These models may perform well on benchmarks, but they usually do not take real-world constraints into account, such as available training data set, synthetic accessibility, and scaffold diversity in drug discovery. In this study, a new algorithm, ChemistGA, was proposed by combining the traditional heuristic algorithm with DL, in which the crossover of the traditional genetic algorithm (GA) was redefined by DL in conjunction with GA, and an innovative backcrossing operation was implemented to generate desired molecules. Our results clearly show that ChemistGA not only retains the strength of the traditional GA but also greatly enhances the synthetic accessibility and success rate of the generated molecules with desired properties. Calculations on the two benchmarks illustrate that ChemistGA achieves impressive performance among the state-of-the-art baselines, and it opens a new avenue for the application of generative models to real-world drug discovery scenarios.


Assuntos
Algoritmos , Descoberta de Drogas , Desenho de Fármacos , Modelos Moleculares
14.
J Cheminform ; 14(1): 56, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987841

RESUMO

Protein mutations occur frequently in biological systems, which may impact, for example, the binding of drugs to their targets through impairing the critical H-bonds, changing the hydrophobic interactions, etc. Thus, accurately predicting the effects of mutations on biological systems is of great interests to various fields. Unfortunately, it is still unavailable to conduct large-scale wet-lab mutation experiments because of the unaffordable experimental time and financial costs. Alternatively, in silico computation can serve as a pioneer to guide the experiments. In fact, numerous pioneering works have been conducted from computationally cheaper machine-learning (ML) methods to the more expensive alchemical methods with the purpose to accurately predict the mutation effects. However, these methods usually either cannot result in a physically understandable model (ML-based methods) or work with huge computational resources (alchemical methods). Thus, compromised methods with good physical characteristics and high computational efficiency are expected. Therefore, here, we conducted a comprehensive investigation on the mutation issues of biological systems with the famous end-point binding free energy calculation methods represented by MM/GBSA and MM/PBSA. Different computational strategies considering different length of MD simulations, different value of dielectric constants and whether to incorporate entropy effects to the predicted total binding affinities were investigated to provide a more accurate way for predicting the energetic change upon protein mutations. Overall, our result shows that a relatively long MD simulation (e.g. 100 ns) benefits the prediction accuracy for both MM/GBSA and MM/PBSA (with the best Pearson correlation coefficient between the predicted ∆∆G and the experimental data of ~ 0.44 for a challenging dataset). Further analyses shows that systems involving large perturbations (e.g. multiple mutations and large number of atoms change in the mutation site) are much easier to be accurately predicted since the algorithm works more sensitively to the large change of the systems. Besides, system-specific investigation reveals that conformational adjustment is needed to refine the micro-environment of the manually mutated systems and thus lead one to understand why longer MD simulation is necessary to improve the predicting result. The proposed strategy is expected to be applied in large-scale mutation effects investigation with interpretation.

15.
J Chem Inf Model ; 62(17): 3993-4007, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-36040137

RESUMO

The mechanism of transcriptional activation/repression of the nuclear receptors (NRs) involves two main conformations of the NR protein, namely, the active (agonistic) and inactive (antagonistic) conformations. Binding of agonists or antagonists to the ligand-binding pocket (LBP) of NRs can regulate the downstream signaling pathways with different physiological effects. However, it is still hard to determine the molecular type of a LBP-bound ligand because both the agonists and antagonists bind to the same position of the protein. Therefore, it is necessary to develop precise and efficient methods to facilitate the discrimination of agonists and antagonists targeting the LBP of NRs. Here, combining structural and energetic analyses with machine-learning (ML) algorithms, we constructed a series of structure-based ML models to determine the molecular category of the LBP-bound ligands. We show that the proposed models work robustly and with high accuracy (ACC > 0.9) for determining the category of molecules derived from docking-based and crystallized poses. Furthermore, the models are also capable of determining the molecular category of ligands with dual opposite functions on different NRs (i.e., working as an agonist in one NR target, whereas functioning as an antagonist in another) with reasonable accuracy. The proposed method is expected to facilitate the determination of the molecular properties of ligands targeting the LBP of NRs with structural interpretation.


Assuntos
Aprendizado de Máquina , Receptores Citoplasmáticos e Nucleares , Sítios de Ligação , Ligantes
16.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35580866

RESUMO

Predicting the native or near-native binding pose of a small molecule within a protein binding pocket is an extremely important task in structure-based drug design, especially in the hit-to-lead and lead optimization phases. In this study, fastDRH, a free and open accessed web server, was developed to predict and analyze protein-ligand complex structures. In fastDRH server, AutoDock Vina and AutoDock-GPU docking engines, structure-truncated MM/PB(GB)SA free energy calculation procedures and multiple poses based per-residue energy decomposition analysis were well integrated into a user-friendly and multifunctional online platform. Benefit from the modular architecture, users can flexibly use one or more of three features, including molecular docking, docking pose rescoring and hotspot residue prediction, to obtain the key information clearly based on a result analysis panel supported by 3Dmol.js and Apache ECharts. In terms of protein-ligand binding mode prediction, the integrated structure-truncated MM/PB(GB)SA rescoring procedures exhibit a success rate of >80% in benchmark, which is much better than the AutoDock Vina (~70%). For hotspot residue identification, our multiple poses based per-residue energy decomposition analysis strategy is a more reliable solution than the one using only a single pose, and the performance of our solution has been experimentally validated in several drug discovery projects. To summarize, the fastDRH server is a useful tool for predicting the ligand binding mode and the hotspot residue of protein for ligand binding. The fastDRH server is accessible free of charge at http://cadd.zju.edu.cn/fastdrh/.


Assuntos
Proteínas , Sítios de Ligação , Entropia , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Proteínas/química
17.
Comput Biol Med ; 147: 105642, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35635904

RESUMO

Phosphatidylinositol 3-kinase (PI3K) is the central regulator of cellular functions and is suggested as a target for various diseases; thus, effective PI3K inhibitors provide a promising opportunity for the pharmaceutical intervention of many diseases. Among them, PI3Kγ has received more attention because of its essential role in immune signaling. However, the development of novel selective PI3Kγ inhibitors is a major challenge due to the high sequence homology across the class I PI3K isoforms. Therefore, understanding the substrate specificity and receptor-ligand interaction of PI3Kγ would be an appropriate strategy for the rational design of potent γ-selective inhibitors. In this study, by combining various molecular modeling approaches (including classic and enhanced sampling molecular dynamics (MD) simulations, end-point binding free energy calculations, and pharmacophore models), three quinolinone core-containing inhibitors, Idelalisib/CAL-101, Duvelisib/IPI-145, and Eganelisib/IPI-549, were employed to reveal the selective binding mechanisms targeting PI3Kγ. The classic MD and free energy calculations highlight the significant interaction and some key residues for the selective binding against PI3Kγ. Furthermore, the dissociation pathway analysis based on umbrella sampling simulations reveals that hydrophobic interactions are dominant for binding of the three ligands during the dissociation processes, and cooperation between the P-loop and the ligands always exists in the binding/dissociation process. Finally, the pharmacophore model revealed that IPI-549 contains a unique hydrophobic feature, and PI3Kγ exhibits an important hydrogen bond donor feature of hydrogen amide. These findings may provide some important information for the rational design and optimization of PI3Kγ-selective inhibitors.


Assuntos
Fosfatidilinositol 3-Quinases , Purinas , Isoquinolinas , Ligantes , Simulação de Dinâmica Molecular , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Quinazolinonas
18.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35395683

RESUMO

Drug design targeting protein-protein interactions (PPIs) associated with the development of diseases has been one of the most important therapeutic strategies. Besides interrupting the PPIs with PPI inhibitors/blockers, increasing evidence shows that stabilizing the interaction between two interacting proteins may also benefit the therapy, such as the development of various types of molecular glues/stabilizers that mostly work by stabilizing the two interacting proteins to regulate the downstream biological effects. However, characterizing the stabilization effect of a stabilizer is usually hard or too complicated for traditional experiments since it involves ternary interactions [protein-protein-stabilizer (PPS) interaction]. Thus, developing reliable computational strategies will facilitate the discovery/design of molecular glues or PPI stabilizers. Here, by fully analyzing the energetic features of the binary interactions in the PPS ternary complex, we systematically investigated the performance of molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) and molecular mechanics generalized Born surface area (MM/GBSA) methods on characterizing the stabilization effects of stabilizers in 14-3-3 systems. The results show that both MM/PBSA and MM/GBSA are powerful tools in distinguishing the stabilizers from the decoys (with area under the curves of 0.90-0.93 for all tested cases) and are reasonable for ranking protein-peptide interactions in the presence or absence of stabilizers as well (with the average Pearson correlation coefficient of ~0.6 at a relatively high dielectric constant for both methods). Moreover, to give a detailed picture of the stabilization effects, the stabilization mechanism is also analyzed from the structural and energetic points of view for individual systems containing strong or weak stabilizers. This study demonstrates a potential strategy to accelerate the discovery of PPI stabilizers.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Desenho de Fármacos , Entropia , Peptídeos , Ligação Proteica , Proteínas/química
19.
Angew Chem Int Ed Engl ; 61(21): e202201510, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35266604

RESUMO

The anomeric configuration can greatly affect the biological functions and activities of carbohydrates. Herein, we report that N-phenyltrifluoroacetimidoyl (PTFAI), a well-known leaving group for catalytic glycosylation, can act as a stereodirecting group for the challenging 1,2-cis α-glycosylation. Utilizing rapidly accessible 1,6-di-OPTFAI glycosyl donors, TMSOTf-catalyzed glycosylation occurred with excellent α-selectivity and broad substrate scope, and the remaining 6-OPTFAI group can be cleaved chemoselectively. The remote participation of 6-OPTFAI is supported by the first characterization of the crucial 1,6-bridged bicyclic oxazepinium ion intermediates by low-temperature NMR spectroscopy. These cations were found to be relatively stable and mainly responsible for the present stereoselectivities. Further application is highlighted in glycosylation reactions toward trisaccharide heparins as well as the convergent synthesis of chacotriose derivatives using a bulky 2,4-di-O-glycosylated donor.


Assuntos
Carboidratos , Trissacarídeos , Catálise , Glicosilação , Heparina , Estereoisomerismo
20.
J Med Chem ; 65(5): 3879-3893, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35188766

RESUMO

Several monoclonal antibodies targeting the programmed cell death-1/programmed cell death-ligand 1 (PD-1/PD-L1) pathway have been used successfully in anticancer immunotherapy. Inherent limitations of antibody-based therapies remain, however, and alternative small-molecule inhibitors that can block the PD-1/PD-L1 axis are urgent needed. Herein, we report the discovery of compound 17 as a bifunctional inhibitor of PD-1/PD-L1 interactions. 17 inhibits PD-1/PD-L1 interactions and promotes dimerization, internalization, and degradation of PD-L1. 17 promotes cell-surface PD-L1 internalized into the cytosol and induces the degradation of PD-L1 in tumor cells through a lysosome-dependent pathway. Furthermore, 17 suppresses tumor growth in vivo by activating antitumor immunity. These results demonstrate that 17 targets the PD-1/PD-L1 axis and induces PD-L1 degradation.


Assuntos
Antígeno B7-H1 , Neoplasias , Antígeno B7-H1/metabolismo , Humanos , Imunoterapia , Neoplasias/metabolismo , Receptor de Morte Celular Programada 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA