Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 360
Filtrar
1.
Nature ; 627(8004): 564-571, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418889

RESUMO

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.


Assuntos
Biodiversidade , Florestas , Mapeamento Geográfico , Árvores , Modelos Biológicos , Especificidade da Espécie , Árvores/classificação , Árvores/fisiologia , Clima Tropical
2.
Toxicon ; 238: 107572, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38145881

RESUMO

Protobothrops mucrosquamatus, also known as the Taiwan Habu, is a venomous snake prevalent in Taiwan. It is accountable for most snakebites in the region. The toxin of the Taiwan Habu has significant hemorrhagic potential. However, patients bitten by this snake often suffer more local injuries than systemic ones. This report presents two cases of individuals bitten by the Taiwan Habu who subsequently experienced thromboembolism. In the first case, an 88-year-old male, bitten on his fourth toe, suffered a cerebral infarction 32 hours post-bite. In the second case, an 82-year-old female, bitten on her ankle, experienced cardiac arrest 19 hours later. Both patients promptly received antivenom and showed no signs of coagulopathy either before or after the snakebite. However, elevated coagulation factor VIII levels were observed in the first case. Our aim is to understand the mechanism behind these thromboembolic events. This report emphasizes the unusually high level of coagulation factor VIIIa and highlights the need for further investigation into the mechanisms involved. Consequently, physicians should assess the risk of thromboembolic events in snakebite patients by evaluating coagulation factors during treatment.


Assuntos
Transtornos da Coagulação Sanguínea , Crotalinae , Mordeduras de Serpentes , Tromboembolia , Serpentes Peçonhentas , Humanos , Masculino , Animais , Feminino , Idoso de 80 Anos ou mais , Mordeduras de Serpentes/complicações , Mordeduras de Serpentes/terapia , Antivenenos/uso terapêutico , Tromboembolia/etiologia , Taiwan
3.
ACS Omega ; 8(37): 34152-34159, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37744798

RESUMO

Vanadium-based catalysts have been commercially used in selective catalytic reduction (SCR), owing to their high catalytic activity and effectiveness across a wide temperature range; however, their catalytic efficiency decreases at lower temperatures under exposure to SOX. This decrease is largely due to ammonium sulfate generation on the catalyst surface. To overcome this limitation, we added ammonium nitrate to the V2O5-WO3/TiO2 catalyst, producing a V2O5-WO3/TiO2 catalyst with nitrate functional groups. With this approach, we found that it was possible to adjust the amount of these functional groups by varying the amount of ammonium nitrate. Overall, the resultant nitrate V2O5-WO3/TiO2 catalyst has large quantities of NO3- and chemisorbed oxygen, which improves the density of Brønsted and Lewis acid sites on the catalyst surface. Furthermore, the nitrated V2O5-WO3/TiO2 catalyst has a high NOX removal efficiency and N2 selectivity at low temperatures (i.e., 300 °C); this is because NO3- and chemisorbed oxygen, generated by nitrate treatment, facilitated the occurrence of a fast SCR reaction. The approach outlined in this study can be applied to a wide range of SCR catalysts, allowing for the development of more, low-temperature SCR catalysts.

4.
Glob Chang Biol ; 29(12): 3409-3420, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36938951

RESUMO

Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha-1 year-1 ; 95% confidence interval [CI] 2.36-5.25) of total AGB loss (8.72 Mg ha-1 year-1 ; CI 5.57-12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%-17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%-57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%-80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.


Assuntos
Árvores , Clima Tropical , Biomassa , Florestas , Carbono
5.
Nat Commun ; 14(1): 1113, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914632

RESUMO

Despite their fundamental importance the links between forest productivity, diversity and climate remain contentious. We consider whether variation in productivity across climates reflects adjustment among tree species and individuals, or changes in tree community structure. We analysed data from 60 plots of humid old-growth forests spanning mean annual temperatures (MAT) from 2.0 to 26.6 °C. Comparing forests at equivalent aboveground biomass (160 Mg C ha-1), tropical forests ≥24 °C MAT averaged more than double the aboveground woody productivity of forests <12 °C (3.7 ± 0.3 versus 1.6 ± 0.1 Mg C ha-1 yr-1). Nonetheless, species with similar standing biomass and maximum stature had similar productivity across plots regardless of temperature. We find that differences in the relative contribution of smaller- and larger-biomass species explained 86% of the observed productivity differences. Species-rich tropical forests are more productive than other forests due to the high relative productivity of many short-stature, small-biomass species.


Assuntos
Florestas , Árvores , Humanos , Biomassa , Madeira , Ásia Oriental , Clima Tropical
6.
Case Rep Ophthalmol ; 14(1): 56-61, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36820307

RESUMO

Herein, we report a case of bilateral simultaneous central retinal vein occlusion (CRVO) secondary to coronavirus disease 2019 (COVID-19). A 48-year-old man, with hypertension, type 2 diabetes mellitus, and stage 4 chronic kidney disease, diagnosed with COVID-19 1 month ago presented to the ophthalmology department with blurred vision in both eyes for 2 weeks. Ocular examination revealed a classic clinical presentation of CRVO in both eyes. Optical coherence tomography revealed increased central macular thickness with intraretinal and subretinal fluid in both eyes. Laboratory data revealed elevated D-dimer and C-reactive protein (CRP) levels. The levels of other hypercoagulability markers were normal. The patient received intravitreal anti-vascular endothelial growth factor therapy in both eyes, followed by regular follow-up every month until complete resolution of symptoms and gradual improvement of the retinal vascular appearance. COVID-19 can cause a variety of coagulation abnormalities and thromboembolic complications such as bilateral simultaneous CRVO. Clinicians and patients should be aware of ocular symptoms and presentations that are probably associated with COVID-19.

7.
Nanomaterials (Basel) ; 12(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36558208

RESUMO

Argyrodite solid electrolytes such as lithium phosphorus sulfur chloride (Li6PS5Cl) have recently attracted great attention due to their excellent lithium-ion transport properties, which are applicable to all-solid-state lithium batteries. In this study, we report the improved ionic conductivity of an argyrodite solid electrolyte, Li6PS5Cl, in all-solid-state lithium batteries via the co-doping of chlorine (Cl) and aluminum (Al) elements. Electrochemical analysis was conducted on the doped argyrodite structure of Li6PS5Cl, which revealed that the substitution of cations and anions greatly improved the ionic conductivity of solid electrolytes. The ionic conductivity of the Cl- and Al-doped Li6PS5Cl (Li5.4Al0.1PS4.7Cl1.3) electrolyte was 7.29 × 10-3 S cm-1 at room temperature, which is 4.7 times higher than that of Li6PS5Cl. The Arrhenius plot of the Li5.4Al0.1PS4.7Cl1.3 electrolyte further elucidated its low activation energy at 0.09 eV.

8.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36362098

RESUMO

We demonstrated highly active and durable hybrid catalysts (HCs) composed of small reduced graphene oxide (srGO) and carbon nanotubes (CNTs) for use as oxygen reduction reaction (ORR) catalysts in proton exchange membrane fuel cells. Pt/srGO and Pt/CNTs were prepared by loading Pt nanoparticles onto srGO and CNTs using a polyol process, and HCs with different Pt/CNT and Pt/srGO ratios were prepared by mechanically mixing the two components. The prepared HCs consisted of Pt/CNTs well dispersed on Pt/srGO, with catalyst HC55, which was prepared using Pt/srGO and Pt/CNTs in a 5:5 ratio, exhibiting excellent oxygen reduction performance and high stability over 1000 cycles of the accelerated durability test (ADT). In particular, after 1000 cycles of the ADT, the normalized electrochemically active surface area of Pt/HC55 decreased by 11.9%, while those of Pt/srGO and Pt/C decreased by 21.2% and 57.6%, respectively. CNTs have strong corrosion resistance because there are fewer defect sites on the surface, and the addition of CNTs in rGO further improved the durability and the electrical conductivity of the catalyst. A detailed analysis of the structural and electrochemical properties of the synthesized catalysts suggested that the synergetic effects of the high specific surface area of srGO and the excellent electrical conductivity of CNTs were responsible for the enhanced efficiency and durability of the catalysts.


Assuntos
Nanotubos de Carbono , Nanotubos de Carbono/química , Prótons , Platina/química , Oxigênio/química
9.
Am J Emerg Med ; 60: 78-82, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35926251

RESUMO

INTRODUCTION: Unihemispheric head gunshot wound (HGSW) are associated with improved survival; however, specific clinical and radiographic characteristics associated with survival have not been clearly defined. To further guide prognosis estimates and care discussions, this study aims to identify unihemispheric HGSWs injury patterns; comparing them to bihemispheric HGSWs characterizing factors associated with improved clinical outcomes and survival. METHODS: Patients presenting to our Level 1 trauma center from January 2013 through May 2019 with HGSW injury were reviewed. Patients were grouped into those with unihemispheric versus bihemispheric HGSWs and survivors versus non-survivors. Clinical variables and head computed tomography (CT) features were compared using comparative statistics. RESULTS: 62 HGSW patients met study criteria (unihemispheric = 33, bihemispheric = 29). Regardless of injury type, avoidance of injury to multiple lobes, temporal, parietal and basal ganglia brain regions and intracranial vascular injury were also associated with survival (p < 0.05). Lower admission GCS score and lower motor GCS score was associated with reduced survival in unihemispheric HGSW injury (p < 0.05). Unihemispheric HGSW survivors demonstrated improved clinical outcomes, with reduced hospital length of stay (5 days vs. 47 days, p = 0.014) and intensive care unit length of stay (3 days vs. 20 days, p = 0.021) and more favorable disposition location. CONCLUSION: We found presenting clinical features and CT imaging patterns previously associated with improved survival in HGSW patients is similar in unihemispheric specific injuries. Importantly, a more favorable admission GCS score may portend survivability in unihemsipheric HGSW. Furthermore, unihemispheric HGSW survivors may have improved clinical outcomes, length of stay and disposition location.


Assuntos
Traumatismos Craniocerebrais , Ferimentos por Arma de Fogo , Traumatismos Craniocerebrais/diagnóstico por imagem , Escala de Coma de Glasgow , Humanos , Prognóstico , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Centros de Traumatologia , Ferimentos por Arma de Fogo/diagnóstico por imagem
10.
Artigo em Inglês | MEDLINE | ID: mdl-35839325

RESUMO

Hydrogen production, which is in the spotlight as a promising eco-friendly fuel, and the need for inexpensive and accurate electronic devices in the biochemistry field are important emerging technologies. However, the use of electrocatalytic devices based on expensive noble metal catalysts limits commercial applications. In recent years, to improve performance and reduce cost, electrocatalysts based on cheaper copper or nickel materials have been investigated for the non-enzymatic glucose oxidation reaction (GOR) and hydrogen evolution reaction (HER). In this study, we demonstrate a facile and easy electrochemical method of forming a cheap nickel copper double hydroxide (NiCu-DH) electrocatalyst deposited onto a three-dimensional (3D) CuNi current collector, which can effectively handle two different reactions due to its high activity for both the GOR and the HER. The as-prepared electrode has a structure comprising abundant 3D-interconnected porous dendritic walls for easy access of the electrolyte ions and highly conductive networks for fast electron transfer; additionally, it provides numerous electroactive sites. The synergistic combination of the dendritic 3D-CuNi with its abundant active sites and the self-made NiCu-DH with its excellent electrocatalytic activity toward the oxidation of glucose and HER enables use of the catalyst for both reactions. The as-prepared electrode as a glucose sensor exhibits an outstanding glucose detection limit value (0.4 µM) and a wide detection range (from 0.4 µM to 1.4 mM) with an excellent sensitivity of 1452.5 µA/cm2/mM. The electrode is independent of the oxygen content and free from chloride poisoning. Furthermore, the as-prepared electrode also requires a low overpotential of -180 mV versus reversible hydrogen electrode to yield a current density of 10 mA/cm2 with a Tafel slope of 73 mV/dec for the HER. Based on this performance, this work introduces a new paradigm for exploring cost-effective bi-functional catalysts for the GOR and HER.

11.
PeerJ ; 10: e13270, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573170

RESUMO

Background: Disturbances are crucial in determining forest biodiversity, dynamics, and ecosystem functions. Surface fire is a significant disturbance in tropical forests, but research on the effect of surface fire on structuring species and functional composition in a community through time remains scarce. Using a 20-year dataset of tree demography in a seasonal evergreen tropical forest in Thailand, we specifically addressed two essential questions: (1) What is the pattern of temporal turnover in species and functional composition in a community with frequent fire disturbance? (2) How did the temporal turnover vary with tree size? Methods: We analyzed species compositional and functional temporal turnovers in four different tree size classes among five tree censuses. We quantified species turnover by calculating Bray-Curtis dissimilarity, and investigated its underlying mechanisms by comparing pairwise dissimilarity of functional traits with simulations from null models. If fire disturbances contribute more to a stochastic process, the functional composition would display a random pattern. However, if they contribute more towards a deterministic process, the functional composition should reveal a non-random pattern. Results: Over 20 years (1994-2014), we observed changes in species composition, whereas functional composition remained relatively stable. The temporal turnover patterns of species and functional compositions varied with tree sizes. In particular, temporal functional turnover shifted very little for large trees, suggesting that changes in species composition of larger trees are contributed by species with similar functional traits through time. The temporal functional composition turnovers of smaller trees (DBH ≤ 5 cm) were mostly at random. We detected a higher functional turnover than expected by null models in some quadrats throughout the 50-ha study plot, and their observed turnover varied with diameter classes. Conclusions: Species compositional changes were caused by changes in the abundance of species with similar functional traits through time. Temporal functional turnover in small trees was random in most quadrats, suggesting that the recruits came from the equal proportions of surviving trees and new individuals of fast-growing species, which increased rapidly after fires. On the other hand, functional composition in big trees was more likely determined by surviving trees which maintained higher functional similarities than small trees through time. Fire disturbance is important for ecosystem functions, as changing forest fire frequency may alter forest turnover, particularly in functional composition in the new recruits of this forest.


Assuntos
Incêndios , Árvores , Humanos , Ecossistema , Florestas , Biodiversidade
12.
Anal Chim Acta ; 1206: 339729, 2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35473878

RESUMO

In this work, we proposed a rapid and easy check of the drinking water pollution level due to bacteria growth by semiconductor gas sensor. Highly sensitive vertical channel organic ammonia gas sensor was used to detect the gases emitted from the polluted water, and then determined effective ammonia concentration according to its response. Residues from meat of fish, shrimp, and fruits were mashed and added to the clean water. The water samples were stored at 35 °C for natural decay. Initially the bacteria concentration was below 100 colony forming unit per ml (cfu/ml), then it increased to103 cfu/ml in 2 h and 105 cfu/ml in 4 h, which was beyond the drinking safety standard, 500 cfu/ml. At this gas level no bad odor can be sensed by human yet, however, the effective ammonia concentration of those samples rises to 300-500 ppb in 2 h. The amine gas sensor can therefore be used as a rapid check if the bacteria level inside the water is far over the safety standard.


Assuntos
Água Potável , Amônia , Bactérias , Água Potável/microbiologia , Gases , Semicondutores , Microbiologia da Água
13.
New Phytol ; 234(5): 1664-1677, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35201608

RESUMO

Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size-related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1-10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate-driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.


Assuntos
Carbono , Clima Tropical , Biomassa , Temperatura , Madeira
14.
Ecol Evol ; 12(1): e8525, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35136563

RESUMO

Density dependence and habitat heterogeneity have been recognized as important driving mechanisms that shape the patterns of seedling survival and promote species coexistence in species-rich forests. In this study, we evaluated the relative importance of density dependence by conspecific, heterospecific, and phylogenetically related neighbors and habitat heterogeneity on seedling survival in the Lienhuachih (LHC) Forest, a subtropical, evergreen forest in central Taiwan. Age-specific effects of different variables were also studied. We monitored the fates of 1,642 newly recruited seedlings of woody plants within a 25-ha Forest Dynamics Plot for 2 years. The effects of conspecific, heterospecific, and phylogenetically related neighbors and habitat heterogeneity on seedling survival were analyzed by generalized linear mixed models. Our results indicated that conspecific negative density dependence (CNDD) had a strong impact on seedling survival, and the effects of CNDD increased with seedling age. Heterospecific positive density dependence (HPDD) and phylogenetic positive density dependence (PPDD) had a significant influence on the survival of seedlings, and stronger HPDD and PPDD effects were detected for older seedlings. Furthermore, seedling survival differed among habitats significantly. Seedling survival was significantly higher in the plateau, high-slope, and low-slope habitats than in the valley. Overall, our results suggested that the effects of CNDD, HPDD, PPDD, and habitat heterogeneity influenced seedling survival simultaneously in the LHC subtropical forest, but their relative importance varied with seedling age. Such findings from our subtropical forest were slightly different from tropical forests, and these contrasting patterns may be attributed to differences in abiotic environments. These findings highlight the importance to incorporate phylogenetic relatedness, seedling age, and habitat heterogeneity when investigating the impacts of density dependence on seedling survival that may contribute to species coexistence in seedling communities.

15.
Glob Chang Biol ; 28(9): 2895-2909, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35080088

RESUMO

The growth and survival of individual trees determine the physical structure of a forest with important consequences for forest function. However, given the diversity of tree species and forest biomes, quantifying the multitude of demographic strategies within and across forests and the way that they translate into forest structure and function remains a significant challenge. Here, we quantify the demographic rates of 1961 tree species from temperate and tropical forests and evaluate how demographic diversity (DD) and demographic composition (DC) differ across forests, and how these differences in demography relate to species richness, aboveground biomass (AGB), and carbon residence time. We find wide variation in DD and DC across forest plots, patterns that are not explained by species richness or climate variables alone. There is no evidence that DD has an effect on either AGB or carbon residence time. Rather, the DC of forests, specifically the relative abundance of large statured species, predicted both biomass and carbon residence time. Our results demonstrate the distinct DCs of globally distributed forests, reflecting biogeography, recent history, and current plot conditions. Linking the DC of forests to resilience or vulnerability to climate change, will improve the precision and accuracy of predictions of future forest composition, structure, and function.


Assuntos
Mudança Climática , Clima Tropical , Biomassa , Demografia , Ecossistema
16.
New Phytol ; 233(2): 705-721, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34716605

RESUMO

The relative importance of tree mortality risk factors remains unknown, especially in diverse tropical forests where species may vary widely in their responses to particular conditions. We present a new framework for quantifying the importance of mortality risk factors and apply it to compare 19 risks on 31 203 trees (1977 species) in 14 one-year periods in six tropical forests. We defined a condition as a risk factor for a species if it was associated with at least a doubling of mortality rate in univariate analyses. For each risk, we estimated prevalence (frequency), lethality (difference in mortality between trees with and without the risk) and impact ('excess mortality' associated with the risk, relative to stand-level mortality). The most impactful risk factors were light limitation and crown/trunk loss; the most prevalent were light limitation and small size; the most lethal were leaf damage and wounds. Modes of death (standing, broken and uprooted) had limited links with previous conditions and mortality risk factors. We provide the first ranking of importance of tree-level mortality risk factors in tropical forests. Future research should focus on the links between these risks, their climatic drivers and the physiological processes to enable mechanistic predictions of future tree mortality.


Assuntos
Árvores , Clima Tropical , Florestas , Fatores de Risco , Árvores/fisiologia
17.
Int J Mol Sci ; 22(22)2021 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-34830182

RESUMO

We demonstrated highly efficient oxygen reduction catalysts composed of uniform Pt nanoparticles on small, reduced graphene oxides (srGO). The reduced graphene oxide (rGO) size was controlled by applying ultrasonication, and the resultant srGO enabled the morphological control of the Pt nanoparticles. The prepared catalysts provided efficient surface reactions and exhibited large surface areas and high metal dispersions. The resulting Pt/srGO samples exhibited excellent oxygen reduction performance and high stability over 1000 cycles of accelerated durability tests, especially the sample treated with 2 h of sonication. Detailed investigations of the structural and electrochemical properties of the resulting catalysts suggested that both the chemical functionality and electrical conductivity of these samples greatly influence their enhanced oxygen reduction efficiency.


Assuntos
Grafite/química , Nanopartículas Metálicas/química , Oxigênio/química , Platina/química , Algoritmos , Catálise , Condutividade Elétrica , Técnicas Eletroquímicas/métodos , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Análise Espectral Raman
18.
Nanomaterials (Basel) ; 11(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34685118

RESUMO

Selective catalytic reduction (SCR) is the most efficient NOX removal technology, and the vanadium-based catalyst is mainly used in SCR technology. The vanadium-based catalyst showed higher NOX removal performance in the high-temperature range but catalytic efficiency decreased at lower temperatures, following exposure to SOX because of the generation of ammonium sulfate on the catalyst surface. To overcome these limitations, we coated an NH4+ layer on a vanadium-based catalyst. After silane coating the V2O5-WO3/TiO2 catalyst by vapor evaporation, the silanized catalyst was heat treated under NH3 gas. By decomposing the silane on the surface, an NH4+ layer was formed on the catalyst surface through a substitution reaction. We observed high NOX removal efficiency over a wide temperature range by coating an NH4+ layer on a vanadium-based catalyst. This layer shows high proton conductivity, which leads to the reduction of vanadium oxides and tungsten oxide; additionally, the NOX removal performance was improved over a wide temperature range. These findings provide a new mothed to develop SCR catalyst with high efficiency at a wide temperature range.

19.
Nanomaterials (Basel) ; 11(6)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070897

RESUMO

In this study, we synthesized V2O5-WO3/TiO2 catalysts with different crystallinities via one-sided and isotropic heating methods. We then investigated the effects of the catalysts' crystallinity on their acidity, surface species, and catalytic performance through various analysis techniques and a fixed-bed reactor experiment. The isotropic heating method produced crystalline V2O5 and WO3, increasing the availability of both Brønsted and Lewis acid sites, while the one-sided method produced amorphous V2O5 and WO3. The crystalline structure of the two species significantly enhanced NO2 formation, causing more rapid selective catalytic reduction (SCR) reactions and greater catalyst reducibility for NOX decomposition. This improved NOX removal efficiency and N2 selectivity for a wider temperature range of 200 °C-450 °C. Additionally, the synthesized, crystalline catalysts exhibited good resistance to SO2, which is common in industrial flue gases. Through the results reported herein, this study may contribute to future studies on SCR catalysts and other catalyst systems.

20.
Nat Ecol Evol ; 5(7): 965-973, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33941904

RESUMO

Ecology cannot yet fully explain why so many tree species coexist in natural communities such as tropical forests. A major difficulty is linking individual-level processes to community dynamics. We propose a combination of tree spatial data, spatial statistics and dynamical theory to reveal the relationship between spatial patterns and population-level interaction coefficients and their consequences for multispecies dynamics and coexistence. Here we show that the emerging population-level interaction coefficients have, for a broad range of circumstances, a simpler structure than their individual-level counterparts, which allows for an analytical treatment of equilibrium and stability conditions. Mechanisms such as animal seed dispersal, which result in clustering of recruits that is decoupled from parent locations, lead to a rare-species advantage and coexistence of otherwise neutral competitors. Linking spatial statistics with theories of community dynamics offers new avenues for explaining species coexistence and calls for rethinking community ecology through a spatial lens.


Assuntos
Ecologia , Florestas , Animais , Análise por Conglomerados , Plantas , Árvores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA