Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Angew Chem Int Ed Engl ; : e202402669, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637296

RESUMO

Singlet oxygen (1O2) is an essential reactive species responsible for selective oxidation of organic matter, especially in Fenton-like processes. However, due to the great limitations in synthesizing catalysts with well-defined active sites, the controllable production and practical application of 1O2 remain challenging. Herein, guided by theoretical simulations, a series of boron nitride-based single-atom catalysts (BvBN/M, M = Co, Fe, Cu, Ni and Mn) were synthesized to regulate 1O2 generation by activating peroxymonosulfate (PMS). All the fabricated BvBN/M catalysts with explicit M-N3 sites promoted the self-decomposition of the two PMS molecules to generate 1O2 with high selectivity, where BvBN/Co possessed moderate adsorption energy and d-band center exhibited superior catalytic activity. As an outcome, the BvBN/Co-PMS system coupled with membrane filtration technology could continuously transform aromatic alcohols to aldehydes with nearly 100% selectivity and conversion rate under mild conditions, suggesting the potential of this novel catalytic system for green organic synthesis.

2.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 38(4): 455-460, 2024 Apr 15.
Artigo em Chinês | MEDLINE | ID: mdl-38632066

RESUMO

Objective: To explore the short-term effectiveness of hip revision surgery guided by artificial intelligence preoperative planning (AIHIP) system. Methods: The clinical data of 22 patients (23 hips) who were admitted between June 2019 and March 2023 and met the selection criteria were retrospectively analyzed. There were 12 males and 10 females with an average age of 69.7 years (range, 44-90 years). There were 19 hips in the first revision, 3 hips in the second revision, and 1 hip in the third revision. The causes of revision included 12 hips with prosthesis loosening, 4 hips with acetabular cup loosening, 3 hips with osteolysis, 2 hips with acetabular dislocation, 1 hip with postoperative infection, and 1 hip with prosthesis wear. There were 6 hips in stage ⅡA, 9 hips in stage ⅡB, 4 hips in stage ⅡC, 3 hips in stage ⅢA, and 1 hip in stage ⅢB according to Paprosky staging of acetabular bone defect. The replacement of prosthesis type, operation time, hospitalization stay, ground active condition, and postoperative infection, fracture, prosthesis loosening, and other adverse events were recorded. The function of the affected limb was evaluated by Harris score before operation, at 1 week and 6 months after operation, and the range of motion of the hip joint was compared before operation and at 6 months after operation. Results: The operation time was 85-510 minutes, with an average of 241.8 minutes; the hospitalization stay was 7-35 days, with an average of 15.2 days; the time of disassociation from the walker was 2-108 days, with an average of 42.2 days. All the 22 patients were followed up 8-53 months (mean, 21.7 months). No adverse events such as prosthesis loosening or infection occurred in the rest of the patients, except for postoperative hematoma of the thigh in 1 patient and dislocation of the hip in 1 hip. The matching degree of acetabular cup was completely matched in 22 hips and mismatched in 1 hip (+2), the matching rate was 95.65%. The matching degree of femoral stem was completely matched in 22 hips and generally matched in 1 hip (-1), and the matching rate was 100%. The Harris scores were 55.3±9.8 and 89.6±7.2 at 1 week and 6 months after operation, respectively, which significantly improved when compared with before operation (33.0±8.6, P<0.05), and further improved at 6 months after operation than at 1 week after operation ( P<0.05). The function of hip joint was evaluated by Harris score at 6 months after operation, and 21 hips were good and 2 hips were moderate, which could meet the needs of daily life. The range of motion of hip joint was (111.09±10.11)° at 6 months after operation, which was significantly different from (79.13±18.50)° before operation ( t=-7.269, P<0.001). Conclusion: AIHIP system can improve the accuracy of revision surgery, reduce the difficulty of surgery, and achieve good postoperative recovery and satisfactory short-term effectiveness.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Luxações Articulares , Masculino , Feminino , Humanos , Idoso , Falha de Prótese , Reoperação , Estudos Retrospectivos , Inteligência Artificial , Seguimentos , Resultado do Tratamento , Articulação do Quadril/cirurgia , Acetábulo/cirurgia , Complicações Pós-Operatórias , Luxações Articulares/cirurgia
3.
Front Neurol ; 15: 1349710, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562424

RESUMO

Background: An association between prognosis and high sodium levels in Traumatic Brain Injury (TBI) patients in Intensive Care Units (ICUs) has been noted, but limited research exists on the ideal sodium level in these patients or the impact on early mortality, using the MIMIC-IV database. Methods: A retrospective survey was conducted on TBI patients from the MIMIC-IV database. Patients were divided into two categories based on their highest serum sodium level within 24 h of admission exceeding 145 mmol/L: those with hypernatremia, and those with moderate-to-low sodium levels. Collected covariates encompasses demographic, clinical, laboratory, and intervention variables. A multivariate logistic regression model was implemented to forecast in-hospital mortality. Results: The study included 1749 TBI patients, with 209 (11.5%) experiencing in-hospital deaths. A non-linear test exposed an L-shaped correlation between sodium level and in-hospital mortality, with mortality rates increasing after a turning point at 144.1 mmol/L. Compared to the moderate-to-low group's 9.3% mortality rate, the hypernatremia group had a significantly higher mortality rate of 25.3% (crude odds ratio = 3.32, 95% confidence interval: 2.37 ~ 4.64, p < 0.001). After adjusting for all covariates, the hypernatremia group continued to show a significant correlation with higher mortality risk (adjusted odds ratio = 2.19, 95% confidence interval: 1.38 ~ 3.47, p = 0.001). This trend remained consistent regardless of the analyses stratification. Conclusion: The study reveals an L-shaped relationship between sodium levels and in-hospital deaths, with a pivotal point at 144.1 mmol/L. TBI patients displaying hypernatremia were independently linked to higher in-hospital mortality, underlining the need for further studies into targeted management of sodium levels in these patients.

4.
Materials (Basel) ; 17(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38673172

RESUMO

Resin mineral composite (RMC) is a new material with several times the damping properties of gray cast iron and great corrosion resistance. Due to its overall brittleness, sawing with a diamond band saw would be a suitable method. In this research, sawing experiments are carried out to study the sawing force characteristics of the material and its surface morphology during the processing. The results show that the feed force level is in the range of 3.5~5.5 N and the tangential force level is relatively low. The distribution of resin mineral components does not have a significant impact on the average sawing force but increases the fluctuation of the lateral force signal. The maximum fluctuation volume is 94.86% higher than other areas. Uneven lateral force, generated when diamond particles pass through the resin-mineral interface, is one of the causes of fluctuations. The machined surface of RMC has uniform strip scratches and a small number of pits. Maintaining a constant ratio of sawing speed to feed speed can result in approximately the same machined surface. A step structure with a height of about 10 µm appears at the interface of resin minerals. As a processing defect, it may affect the performance of RMC components in some aspects, which need a further precision machining processing.

5.
Chemosphere ; 354: 141737, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499078

RESUMO

Extracting heavy metal ions from wastewater has significant implications for both environmental remediation and resource preservation. However, the conventional adsorbents still suffer from incomplete ion removal and low utilization efficiency of the recovered metals. Herein, we present an extraction and reutilization method assisted by porous boron nitride (p-BN) containing high-density N atoms for metal recovery with simultaneous catalyst formation. The p-BN exhibits stable and efficient metal adsorption performance, particularly for ultra-trace-level water purification. The distribution coefficients towards Pb2+, Cd2+, Co2+ and Fe3+ can exceed 106 mL g-1 and the residual concentrations that reduced from 1 mg L-1 to 0.8-1.3 µg L-1 are much lower than the acceptable limits in drinking water standards of World Health Organization. Meanwhile, the used p-BN after Co ion adsorption can be directly adopted as a high-efficiency catalyst for activating peroxymonosulfate (PMS) in organic pollutant degradation without additional post-treatment, avoiding the secondary metal pollution and the problems of neglected manpower and energy consumption. Moreover, a flow-through multistage utilization system assisted by p-BN/polyvinylidene fluoride (PVDF) membrane is constructed for achieving both metal ion separation and reutilization in the removal of organic pollutants, providing a new avenue for sustainable wastewater remediation.


Assuntos
Compostos de Boro , Poluentes Ambientais , Metais Pesados , Poluentes Químicos da Água , Águas Residuárias , Porosidade , Poluentes Químicos da Água/análise , Metais Pesados/análise , Adsorção , Íons
6.
J Environ Manage ; 354: 120383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382434

RESUMO

The research presented herein explores the development of a novel iron-carbon composite, designed specifically for the improved treatment of high-concentration antibiotic wastewater. Employing a nitrogen-shielded thermal calcination approach, the investigation utilizes a blend of reductive iron powder, activated carbon, bentonite, copper powder, manganese dioxide, and ferric oxide to formulate an efficient iron-carbon composite. The oxygen exclusion process in iron-carbon particles results in distinctive electrochemical cells formation, markedly enhancing wastewater degradation efficiency. Iron-carbon micro-electrolysis not only boosts the biochemical degradability of concentrated antibiotic wastewater but also mitigates acute biological toxicity. In response to the increased Fe2+ levels found in micro-electrolysis wastewater, this research incorporates Fenton oxidation for advanced treatment of the micro-electrolysis byproducts. Through the synergistic application of iron-carbon micro-electrolysis and Fenton oxidation, this research accomplishes a significant decrease in the initial COD levels of high-concentration antibiotic wastewater, reducing them from 90,000 mg/L to about 30,000 mg/L, thus achieving an impressive removal efficiency of 66.9%. This integrated methodology effectively reduces the pollutant load, and the recycling of Fe2+ in the Fenton process additionally contributes to the reduction in both the volume and cost associated with solid waste treatment. This research underscores the considerable potential of the iron-carbon composite material in efficiently managing high-concentration antibiotic wastewater, thereby making a notable contribution to the field of environmental science.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Águas Residuárias , Ferro , Eliminação de Resíduos Líquidos/métodos , Antibacterianos , Pós , Eletrólise/métodos , Oxirredução , Peróxido de Hidrogênio
7.
JAMA Netw Open ; 7(2): e2354937, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38335001

RESUMO

Importance: Prehypertension increases the risk of developing hypertension and other cardiovascular diseases. Early and effective intervention for patients with prehypertension is highly important. Objective: To assess the efficacy of Tai Chi vs aerobic exercise in patients with prehypertension. Design, Setting, and Participants: This prospective, single-blinded randomized clinical trial was conducted between July 25, 2019, and January 24, 2022, at 2 tertiary public hospitals in China. Participants included 342 adults aged 18 to 65 years with prehypertension, defined as systolic blood pressure (SBP) of 120 to 139 mm Hg and/or diastolic BP (DBP) of 80 to 89 mm Hg. Interventions: Participants were randomized in a 1:1 ratio to a Tai Chi group (n = 173) or an aerobic exercise group (n = 169). Both groups performed four 60-minute supervised sessions per week for 12 months. Main Outcomes and Measures: The primary outcome was SBP at 12 months obtained in the office setting. Secondary outcomes included SBP at 6 months and DBP at 6 and 12 months obtained in the office setting and 24-hour ambulatory BP at 12 months. Results: Of the 1189 patients screened, 342 (mean [SD] age, 49.3 [11.9] years; 166 men [48.5%] and 176 women [51.5%]) were randomized to 1 of 2 intervention groups: 173 to Tai Chi and 169 to aerobic exercise. At 12 months, the change in office SBP was significantly different between groups by -2.40 (95% CI, -4.39 to -0.41) mm Hg (P = .02), with a mean (SD) change of -7.01 (10.12) mm Hg in the Tai Chi group vs -4.61 (8.47) mm Hg in the aerobic exercise group. The analysis of office SBP at 6 months yielded similar results (-2.31 [95% CI, -3.94 to -0.67] mm Hg; P = .006). Additionally, 24-hour ambulatory SBP (-2.16 [95% CI, -3.84 to -0.47] mm Hg; P = .01) and nighttime ambulatory SBP (-4.08 [95% CI, -6.59 to -1.57] mm Hg; P = .002) were significantly reduced in the Tai Chi group compared with the aerobic exercise group. Conclusions and Relevance: In this study including patients with prehypertension, a 12-month Tai Chi intervention was more effective than aerobic exercise in reducing SBP. These findings suggest that Tai Chi may help promote the prevention of cardiovascular disease in populations with prehypertension. Trial Registration: Chinese Clinical Trial Registry Identifier: ChiCTR1900024368.


Assuntos
Pré-Hipertensão , Tai Chi Chuan , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Pressão Sanguínea , Exercício Físico , Pré-Hipertensão/terapia , Estudos Prospectivos , Adolescente , Adulto Jovem , Idoso
8.
Commun Biol ; 6(1): 1259, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38086994

RESUMO

Interrogation of subcellular biological dynamics occurring in a living cell often requires noninvasive imaging of the fragile cell with high spatiotemporal resolution across all three dimensions. It thereby poses big challenges to modern fluorescence microscopy implementations because the limited photon budget in a live-cell imaging task makes the achievable performance of conventional microscopy approaches compromise between their spatial resolution, volumetric imaging speed, and phototoxicity. Here, we incorporate a two-stage view-channel-depth (VCD) deep-learning reconstruction strategy with a Fourier light-field microscope based on diffractive optical element to realize fast 3D super-resolution reconstructions of intracellular dynamics from single diffraction-limited 2D light-filed measurements. This VCD-enabled Fourier light-filed imaging approach (F-VCD), achieves video-rate (50 volumes per second) 3D imaging of intracellular dynamics at a high spatiotemporal resolution of ~180 nm × 180 nm × 400 nm and strong noise-resistant capability, with which light field images with a signal-to-noise ratio (SNR) down to -1.62 dB could be well reconstructed. With this approach, we successfully demonstrate the 4D imaging of intracellular organelle dynamics, e.g., mitochondria fission and fusion, with ~5000 times of observation.


Assuntos
Imageamento Tridimensional , Mitocôndrias , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos
9.
J Biomol Struct Dyn ; : 1-20, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112295

RESUMO

Cyclin dependent kinases (CDKs) play an important role in cell cycle regulation and their dysfunction is associated with many cancers. That is why CDKs have been attractive targets for the treatment of cancer. Glioblastoma is a cancer caused by the aberrant expression of CDK4/6, so exploring the mechanism of the selection of CDK4/6 toward inhibitors relative to the other family members CDK1/2 is essential. In this work, multiple replica molecular dynamics (MRMD) simulations, principal component analysis (PCA), free energy landscapes (FELs), molecular mechanics Poisson-Boltzmann/Generalized Born surface area (MM-PB/GBSA) and other methods were integrated to decipher the selectively binding mechanism of the inhibitor N1J to CDK4/6 and CDK1/2. Molecular electrostatic potential (MESP) analysis provides an explanation for the N1J selectivity. Residue-based free energy decomposition reveals that most of the hot residues are located at the same location of CDKs proteins, but the different types of residues in different proteins cause changes in binding energy, which is considered as a potential developmental direction to improve the selectivity of inhibitors to CDK4/6. These results provide insights into the source of inhibitor and CDK4/6 selectivity for the future development of more selective inhibitors.Communicated by Ramaswamy H. Sarma.

10.
Phys Chem Chem Phys ; 25(41): 28479-28496, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37846774

RESUMO

The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to spread globally, and rapid viral evolution and the emergence of new variants pose challenges to pandemic control. During infection, the spike protein of SARS-CoV-2 interacts with the human ACE2 protein via its receptor binding domain (RBD), and it is known that engineered forms of ACE2 can compete with wild-type (WT) ACE2 for binding to inhibit infection. Here, we conducted multiple replica molecular dynamics (MRMD) simulations to study the mechanisms of the engineered ACE2 variants 3N39 and 3N94 and provide directions for optimization. Our findings reveal that engineered ACE2 is notably more efficacious in systems that show weaker binding to WT ACE2 (i.e., WT and BA.1 RBD), but also faces immune escape as the virus evolves. Moreover, by modifying residue types near the binding interface, engineered ACE2 alters the electrostatic potential distribution and reconfigures the hydrogen bonding network, which results in modified binding to the RBD. However, this structural rearrangement does not occur in all RBD variants. In addition, we identified potentially engineerable beneficial residues and potentially engineerable detrimental residues in both ACE2 and RBD. Functional conservation can thus enable the optimization of these residues and improve the binding competitiveness of engineered ACE2, which therefore provides additional immune escape prevention. Finally, we conclude that these findings have implications for understanding the mechanisms responsible for engineered ACE2 and can help us to develop engineered ACE2 proteins that show superior performance.


Assuntos
Enzima de Conversão de Angiotensina 2 , Simulação de Dinâmica Molecular , Humanos , Sítios de Ligação , Ligação Competitiva , Pandemias , SARS-CoV-2/genética , Ligação Proteica , Mutação
11.
Front Cardiovasc Med ; 10: 1147740, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564906

RESUMO

Introduction: Preventing ischemia-reperfusion injury is the main direction of myocardial infarction treatment in the convalescent stage. Some studies have suggested that saponins in Traditional Chinese medicine (TCM) preparations can protect the myocardium by various mechanisms. Our meta-analysis aims to evaluate the efficacy of TCM saponins in treating myocardial ischemia-reperfusion injury (MIRI) and to summarize the potential molecular mechanisms further. Methods: We conducted a literature search in six electronic databases [Web of Science, PubMed, Embase, Cochrane Library, Sinomed, China National Knowledge Infrastructure (CNKI)] until October 2022. Results: Seventeen eligible studies included 386 animals (254 received saponins and 132 received vehicles). The random effect model is used to calculate the combined effect. The effect size is expressed as the weighted average difference (WMD) and 95% confidence interval (CI). Compared with placebo, saponins preconditioning reduced infarct size after MIRI significantly (WMD: -3.60,95% CI: -4.45 to -2.74, P < 0.01, I2: 84.7%, P < 0.001), and significantly increased EF (WMD: 3.119, 95% CI: 2.165 to 4.082, P < 0.01, I2: 82.9%, P < 0.0 L) and FS (WMD: 3.157, 95% CI: 2.218 to 4.097, P < 0.001, I2: 81.3%, P < 0.001). Discussion: The results show that the pre-administration of saponins from TCM has a significant protective effect on MIRI in preclinical studies, which provides an application prospect for developing anti-MIRI drugs with high efficiency and low toxicity.

12.
Bioelectrochemistry ; 154: 108526, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37523801

RESUMO

In this study, a 13-mer antimicrobial peptide (RRWRIVVIRVRRC) named by E6 was used as an enhancer of a green biocide to mitigate the biocorrosion of EH36 ship steel. Results show that a low concentration of E6 (100 nM) alone was no-biocidal and could not resist the Desulfovibrio vulgaris adhesion on the EH36 steel surface. However, E6 enhanced the bactericidal effect of tetrakis hydroxymethyl phosphonium sulfate (THPS). When E6 and THPS were both added to the bacteria and steel system, both the sessile D. vulgaris cells and biocorrosion rate of EH36 steel decreased significantly. Compared with the 80 ppm THPS alone treatment, the combination of 100 nM E6 + 80 ppm THPS led to an extra 1.6-log reduction in the sessile cell count. Fewer sessile D. vulgaris cells led to a lower extracellular electron transfer (EET) rate, directly resulting in 78% and 83% decreases in weight loss and pit depth of EH36 steel, respectively. E6 saved more than 50% of THPS dosage in this work to achieve a similar biocorrosion mitigation effect on EH36 steel.


Assuntos
Desinfetantes , Desinfetantes/farmacologia , Aço , Navios , Biofilmes , Bactérias , Corrosão
13.
J Orthop Surg Res ; 18(1): 523, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481538

RESUMO

BACKGROUND: The use of degradable magnesium screws to fix the bone flap implanted in the treatment of femoral head necrosis has achieved preliminary good therapeutic results. However, there is no conclusive evidence in the study to demonstrate whether biodegradable magnesium screws promote angiogenesis and no comparison has been made between degradable magnesium screws and traditional screws. OBJECTIVE: To investigate the clinical efficacy and safety of biodegradable magnesium screws in pedicled vascularized iliac bone graft transfer (PVIBGT) for osteonecrosis of the femoral head (ONFH). MATERIALS AND METHODS: A total of thirty-six patients (37 hips) with ONFH were recruited from March 2020 to July 2022. The study used a single-blind method, and patients who underwent PVIBGT were randomized into three groups: 12 patients (12 hips) were fixed with biodegradable magnesium screws (Group A), 12 patients (13 hips) were fixed with titanium screws (Group B), 12 patients (12 hips) were directly embedded (Group C). The operating time and the length of stay were recorded. Harris scores, radiological examinations (X-ray, CT, DCE-MRI), blood and serum tests were conducted before and after surgery. The gas yield and degradation rates of the magnesium screws were measured at the 3-months and 6-months post-operative follow-ups in Group A. RESULTS: There was no statistically significant difference among these three groups in terms of types, gender, age, course of disease, surgical side, operation time, the length of stay (P > 0.05). All patients were followed up for 6 months. The mean Harris scores were higher in all groups 6 months after surgery (P < 0.05). The rates of excellent and good outcomes were 66.7%, 46.2%, and 33.3% in Groups A, B, and C, respectively. PVIBGT and magnesium screws can improve the blood supply of the femoral head via DCE-MRI evaluation. Two patients with poor incision healing received prompt treatment and subsequently recovered well. No adverse events, such as hip infection or deep vein thrombosis, were reported in the patients. The patients had good biocompatibility of magnesium screws, and no fracture of the magnesium screws was observed in Group A. Liver and kidney functions (including serum magnesium) were within normal ranges. The area of the intermuscular air space was 0 cm2 in follow-ups. The degradation rate of the biodegradable magnesium screws was approximately 10.32% at the 3-months follow-up and 13.72% at the 6-months follow-up. CONCLUSIONS: PVIBGT has a positive effect, especially with regard to improving blood supply of the femoral head. The fixation of biodegradable magnesium screws is reliable and safe in PVIBGT, and promote angiogenesis.


Assuntos
Magnésio , Osteonecrose , Humanos , Titânio , Cabeça do Fêmur , Método Simples-Cego , Parafusos Ósseos
14.
Adv Mater ; 35(36): e2302706, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37278691

RESUMO

Liquid crystal elastomer (LCE) exhibits large and reversible deformability originating from the alignment of liquid crystal mesogens. Additive manufacturing provides high controllability in the alignment and shaping process of LCE actuators. However, it still remains a challenge to customize LCE actuators with both diverse 3D deformability and recyclability. In this study, a new strategy is developed to exploit knitting technique to additively manufacture LCE actuators. The obtained LCE actuators are fabric-structured with designed geometry and deformability. By accurately adjusting the parameters of the knitting patterns as modules, diverse geometry is pixel-wise designed, and complex 3D deformations including bending, twisting, and folding are quantitatively controlled. In addition, the fabric-structured LCE actuators can be threaded, stitched, and reknitted to achieve advanced geometry, integrated multi-functions and efficient recyclability. This approach allows the fabrication of versatile LCE actuators with potential applications in smart textiles and soft robots.

15.
ACS Appl Mater Interfaces ; 15(22): 27056-27064, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37233027

RESUMO

Multicomponent materials are microwave-absorbing (MA) materials composed of a variety of absorbents that are capable of reaching the property inaccessible for a single component. Discovering mostly valuable properties, however, often relies on semi-experience, as conventional multicomponent MA materials' design rules alone often fail in high-dimensional design spaces. Therefore, we propose performance optimization engineering to accelerate the design of multicomponent MA materials with desired performance in a practically infinite design space based on very sparse data. Our approach works as a closed-loop, integrating machine learning with the expanded Maxwell-Garnett model, electromagnetic calculations, and experimental feedback; aiming at different desired performances, Ni surface@carbon fiber (NiF) materials and NiF-based multicomponent (NMC) materials with target MA performance were screened and identified out of nearly infinite possible designs. The designed NiF and NMC fulfilled the requirements for the X- and Ku-bands at thicknesses of only 2.0 and 1.78 mm, respectively. In addition, the targets regarding S, C, and all bands (2.0-18.0 GHz) were also achieved as expected. This performance optimization engineering opens up a unique and effective way to design microwave-absorbing materials for practical application.

16.
Virus Res ; 332: 199119, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37201645

RESUMO

Avian reovirus (ARV) can commonly infect a flock and cause immunosuppressive diseases in poultry. The nonstructural protein p17 is involved in viral replication, and significant progress has been made in showing its ability to regulate cellular signaling pathways. In our previous study, to further investigate the effect of ARV p17 protein on viral replication, the host protein polyglu-tamine binding protein 1 (PQBP1) was identified to interact with p17 by a yeast two-hybrid system. In the current study, the interaction between PQBP1 and p17 protein was further confirmed by laser confocal microscopy and coimmunoprecipitation assays. In addition, the N-terminal WWD of PQBP1 was found to mediate the process of binding to the p17 protein. Interestingly, we found that ARV infection significantly inhibited PQBP1 expression. While the quantity of ARV replication was largely influenced by PQBP1, PQBP1 overexpression decreased ARV replication. In contrast, upon PQBP1 knockdown, the quantity of ARV was notably increased. ARV infection and p17 protein expression were both proven to induce PQBP1 to mediate cellular inflammation. In the current study, we revealed through qRT‒PCR, ELISA and Western blotting methods that PQBP1 plays a positive role in ARV-induced inflammation. Furthermore, the mechanism of this process was shown to involve the NFκB-dependent transcription of inflammatory genes. In addition, PQBP1 was shown to regulate the phosphorylation of p65 protein. In conclusion, this research provides clues to elucidating the function of the p17 protein and the pathogenic mechanism of ARV, especially the cause of the inflammatory response. It also provides new ideas for the study of therapeutic targets of ARV.


Assuntos
Orthoreovirus Aviário , Proteínas Virais , Animais , Chlorocebus aethiops , Proteínas Virais/metabolismo , Orthoreovirus Aviário/genética , Células Vero , Replicação Viral , Linhagem Celular
17.
DNA Cell Biol ; 42(6): 336-347, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37126948

RESUMO

Hepatocellular carcinoma (HCC) is a common malignancy that is associated with poor prognosis in humans. Despite the development of targeted drugs, overall survival remains a significant challenge, and new therapeutic strategies are urgently needed. The aim of this study was to investigate the function of miR-552-5p in ferroptosis and the underlying mechanism, as well as to explore novel strategies for HCC treatment. CCK8 assay results showed that the viability of Huh-7 and Hep3B cells decreased significantly after transfection of the miR-552-5p inhibitor. In addition, we found that glutathione levels were depleted, intracellular Fe2+ levels were elevated, and the mean fluorescence intensity of C11-BODIPY was increased after miR-552-5p transfection. Transmission electron microscopy revealed that mitochondria became smaller and mitochondrial membrane intensity was increased in the inhibitor+RSL3 group. Mechanistically, a dual-luciferase reporter assay confirmed that miR-552-5p interacted with the 3' untranslated region (3' UTR) of acyl-CoA synthetase long-chain family member 4 (ACSL4) mRNA. qPCR and Western blotting results verified that miR-552-5p negatively regulated ACSL4 expression. In addition, we found that overexpression of ZNF8, which is a transcription factor, reduced intracellular miR-552-5p levels and enhanced sensitivity to ferroptosis. miR-552-5p reduces sensitivity to ferroptosis by targeting the 3' UTR of ACSL4 in HCC. The ZNF8-miR-552-5p-ACSL4 axis is involved in regulation of ferroptosis in HCC, and these findings may provide a new therapeutic target for treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , MicroRNAs , Humanos , Regiões 3' não Traduzidas , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Ferroptose/genética , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like/genética , Neoplasias Hepáticas/patologia , MicroRNAs/genética , MicroRNAs/metabolismo
18.
Opt Lett ; 48(10): 2768-2771, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186761

RESUMO

As the critical device of microwave photonics and optical communication, the low-loss and high-efficiency optical phase shifter has attracted intense attention in photonic integrated circuits. However, most of their applications are restricted to a particular band. Little is known about the characteristics of broadband. In this paper, an SiN-MoS2 integrated broadband racetrack phase shifter is demonstrated. The coupling region and the structure of the racetrack resonator are elaborately designed to improve the coupling efficiency at each resonance wavelength. The ionic liquid is introduced to form a capacitor structure. Then, the effective index of the hybrid waveguide can be efficiently tuned by adjusting the bias voltage. We achieve a phase shifter with a tunable range covering all the WDM bands and even up to 1900 nm. The highest phase tuning efficiency is measured to be 72.75 pm/V at 1860 nm, and the corresponding half-wave-voltage-length product is calculated as 0.0608 V·cm.

19.
Front Oncol ; 13: 1087082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776320

RESUMO

Background: Histone demethylase RIOX2 was cloned as a c-Myc downstream gene involved in cell proliferation and has been implicated as an oncogenic factor in multiple tumor types. Its expression profiles and correlation with disease progression in prostate cancers are unknown. Methods: Transcriptomic profiles of Jumanji domain-containing protein genes were assessed using multiple public expression datasets generated from RNA-seq and cDNA microarray assays. RIOX2 protein expression was assessed using an immunohistochemistry approach on a tissue section array from benign and malignant prostate tissues. Gene expression profiles were analyzed using the bioinformatics software R package. Western blot assay examined androgen stimulation on RIOX2 protein expression in LNCaP cells. Results: Among 35 Jumanji domain-containing protein genes, 12 genes were significantly upregulated in prostate cancers compared to benign compartments. COX regression analysis identified that the ribosomal oxygenase 2 (RIOX2) gene was the only one significantly associated with disease-specific survival outcomes in prostate cancer patients. RIOX2 upregulation was confirmed at the protein levels using immunohistochemical assays on prostate cancer tissue sections. Meanwhile, RIOX2 upregulation was associated with clinicopathological features, including late-stage diseases, adverse Gleason scores, TP53 gene mutation, and disease-free status. In castration-resistant prostate cancers (CRPC), RIOX2 expression was positively correlated with AR signaling index but negatively correlated with the neuroendocrinal progression index. However, androgen treatment had no significant stimulatory effect on RIOX2 expression, indicating a parallel but not a causative effect of androgen signaling on RIOX2 gene expression. Further analysis discovered that RIOX2 expression was tightly correlated with its promoter hypomethylation and MYC gene expression, consistent with the notion that RIOX2 was a c-Myc target gene. Conclusion: The Jumanji domain-containing protein RIOX2 was significantly overexpressed in prostate cancer, possibly due to c-Myc upregulation. RIOX2 upregulation was identified as an independent prognostic factor for disease-specific survival.

20.
Chemosphere ; 313: 137394, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36442675

RESUMO

Iron-based layered double hydroxides (LDHs) have drawn tremendous attention as a promising peroxymonosulfate (PMS) activators, but they still suffer from low efficiencies limited by electrostatic agglomeration and low electronic conductivity. Herein, a MgFeAl layered double hydroxide/carbonitride (LDH/CN) heterostructure was constructed via triggering the interlayer reaction of citric acid (CA) and urea. CA as a structure-directing agent regulated the interlayer anion of MgFeAl-LDH, which enabled an interfacial tuning in the process of coupling with CN. The obtained LDH/CN heterostructure, as an efficient PMS activator, achieved nearly 100% bisphenol A (BPA) removal rate in 10 min with high specific activity (0.146 L min-1·m-2). Electron paramagnetic resonance (EPR) tests, quenching experiments, electrochemical characterization and X-ray photoelectrons spectroscopy (XPS) tests were applied to clarify the mechanism of BPA degradation. The results unraveled that the activity of the catalyst originated from the heterostructure of LDH and CN with an efficient interfacial electron transfer, which promoted the fast generation of O2•- for rapid pollutant degradation. In addition, the catalyst exhibited excellent applicability in realistic wastewater. This work offered a rational strategy for forming a heterostructure catalyst with a fine interface engineering in actual environmental cleanup.


Assuntos
Ácido Cítrico , Hidróxidos , Condutividade Elétrica , Peróxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA