Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323894

RESUMO

Catalyzed reduction processes have been recognized as important and supplementary technologies for water treatment, with the specific aims of resource recovery, enhancement of bio/chemical-treatability of persistent organic pollutants, and safe handling of oxygenate ions. Palladium (Pd) has been widely used as a catalyst/electrocatalyst in these reduction processes. However, due to the limited reserves and high cost of Pd, it is essential to gain a better understanding of the Pd-catalyzed decontamination process to design affordable and sustainable Pd catalysts. This review provides a systematic summary of recent advances in understanding Pd-catalyzed reductive decontamination processes and designing Pd-based nanocatalysts for the reductive treatment of water-borne pollutants, with special focus on the interactions and transformation mechanisms of pollutant molecules on Pd catalysts at the atomic scale. The discussion begins by examining the adsorption of pollutants onto Pd sites from a thermodynamic viewpoint. This is followed by an explanation of the molecular-level reaction mechanism, demonstrating how electron-donors participate in the reductive transformation of pollutants. Next, the influence of the Pd reactive site structure on catalytic performance is explored. Additionally, the process of Pd-catalyzed reduction in facilitating the oxidation of pollutants is briefly discussed. The longevity of Pd catalysts, a crucial factor in determining their practicality, is also examined. Finally, we argue for increased attention to mechanism study, as well as precise construction of Pd sites under batch synthesis conditions, and the use of Pd-based catalysts/electrocatalysts in the treatment of concentrated pollutants to facilitate resource recovery.

2.
ACS Nano ; 17(9): 8499-8510, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37074122

RESUMO

Heterogenous Pd catalysts play a pivotal role in the chemical industry; however, it is plagued by S2- or other strong adsorbates inducing surface poisoning long term. Herein, we report the development of AuFe3@Pd/γ-Fe2O3 nanosheets (NSs) as an in situ regenerable and highly active hydrogenation catalyst. Upon poisoning, the Pd monolayer sites could be fully and oxidatively regenerated under ambient conditions, which is initiated by •OH radicals from surface defect/FeTetra vacancy-rich γ-Fe2O3 NSs via the Fenton-like pathway. Both experimental and theoretical analyses demonstrate that for the electronic and geometric effect, the 2-3 nm AuFe3 intermetallic nanocluster core promotes the adsorption of reactant onto Pd sites; in addition, it lowers Pd's affinity for •OH radicals to enhance their stability during oxidative regeneration. When packed into a quartz sand fixed-bed catalyst column, the AuFe3@Pd/γ-Fe2O3 NSs are highly active in hydrogenating the carbon-halogen bond, which comprises a crucial step for the removal of micropollutants in drinking water and recovery of resources from heavily polluted wastewater, and withstand ten rounds of regeneration. By maximizing the use of ultrathin metal oxide NSs and intermetallic nanocluster and monolayer Pd, the current study demonstrates a comprehensive strategy for developing sustainable Pd catalysts for liquid catalysis.

3.
Environ Sci Technol ; 2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36617724

RESUMO

Electrochemical reduction (ER) is a promising approach to safely remove pollutants. However, sluggish reaction kinetics and significant side reactions considerably limit the applicability of this green process. Herein, we uncovered the previously ignored role of interfacial hydrophilicity in determining the ER performance through electron microscopy observations, contact angle (CA) analysis, and electrochemical measurements. A Pd/C electrocatalyst forms dense nanopores on the electrode surface, rendering it highly hydrophobic and achieving a CA of up to 145°. This imposes a large mass-transfer barrier for the diffusion of water and pollutants into Pd sites. Moreover, the release of H2 is suppressed, which changes the solid-liquid (Pd-polluted water) interface into a solid-gas (H2)-liquid interface. This further slows down mass transfer and the decontamination process. This dilemma can be easily alleviated by adding hydrophilic polymers like polyethylene glycol to increase hydrophilicity and improve mass transfer. By this way, the activity and Faraday efficiency of Pd/C in the electrochemical hydrodehalogenation of 2,4-dichlorophenol could be increased by 4-5 times. Moreover, this interfacial microenvironment modulation strategy is parallel to other approaches, such as Pd structural engineering, and therefore these strategies can be combined to further increase the electrochemical decontamination performance of electrocatalysts.

4.
ACS Appl Mater Interfaces ; 8(3): 2449-55, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26719952

RESUMO

Quick and accurate on-site detection of active ricin has very important realistic significance in view of national security and defense. In this paper, optimized single-stranded oligodeoxynucleotides named poly(21dA), which function as a depurination substrate of active ricin, were screened and chemically attached on gold nanoparticles (AuNPs, ∼100 nm) via the Au-S bond [poly(21dA)-AuNPs]. Subsequently, poly(21dA)-AuNPs were assembled on a dihydrogen lipoic-acid-modified Si wafer (SH-Si), thus forming the specific surface-enhanced Raman spectroscopy (SERS) chip [poly(21dA)-AuNPs@SH-Si] for depurination of active ricin. Under optimized conditions, active ricin could specifically hydrolyze multiple adenines from poly(21dA) on the chip. This depurination-induced composition change could be conveniently monitored by measuring the distinct attenuation of the SERS signature corresponding to adenine. To improve sensitivity of this method, a silver nanoshell was deposited on post-reacted poly(21dA)-AuNPs, which lowered the limit of detection to 8.9 ng mL(-1). The utility of this well-controlled SERS chip was successfully demonstrated in food and biological matrices spiked with different concentrations of active ricin, thus showing to be very promising assay for reliable and rapid on-site detection of active ricin.


Assuntos
Purinas/química , Ricina/análise , Análise Espectral Raman/métodos , Ouro/química , Nanopartículas/química , Nanopartículas/ultraestrutura , Oligodesoxirribonucleotídeos/química , Espectrofotometria Ultravioleta
5.
Chem Commun (Camb) ; 51(7): 1309-12, 2015 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-25482150

RESUMO

In this report, we propose and demonstrate the fabrication of a highly-specific SERS substrate, which was achieved by the co-precipitation of functional materials, such as nanosorbents and nanocatalysts, into Ag nanoporous films. Based on the nanostructures developed, we performed the ultrasensitive detection of arsenic ions by SERS and monitored the catalyzed reactions using real-time SERS.

6.
Anal Chem ; 86(15): 7286-92, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-24978841

RESUMO

By coupling surface-enhanced Raman spectroscopy (SERS) with thin layer chromatography (TLC), a facile and powerful method was developed for on-site monitoring the process of chemical reactions. Samples were preseparated on a TLC plate following a common TLC procedure, and then determined by SERS after fabricating a large-area, uniform SERS substrate on the TLC plate by spraying gold nanoparticles (AuNPs). Reproducible and strong SERS signals were obtained with substrates prepared by spraying 42-nm AuNPs at a density of 5.54 × 10(10) N/cm(2) on the TLC plate. The capacity of this TLC-SERS method was evaluated by monitoring a typical Suzuki coupling reaction of phenylboronic acid and 2-bromopyridine as a model. Results showed that this proposed method is able to identify reaction product that is invisible to the naked eye, and distinguish the reactant 2-bromopyridine and product 2-phenylpyridine, which showed almost the same retention factors (R(f)). Under the optimized conditions, the peak area of the characteristic Raman band (755 cm(-1)) of the product 2-phenylpyridine showed a good linear correlation with concentration in the range of 2-200 mg/L (R(2) = 0.9741), the estimated detection limit (1 mg/L 2-phenylpyridine) is much lower than the concentration of the chemicals in the common organic synthesis reaction system, and the product yield determined by the proposed TLC-SERS method agreed very well with that by UPLC-MS/MS. In addition, a new byproduct in the reaction system was found and identified through continuous Raman detection from the point of sample to the solvent front. This facile TLC-SERS method is quick, easy to handle, low-cost, sensitive, and can be exploited in on-site monitoring the processes of chemical reactions, as well as environmental and biological processes.

7.
Anal Chim Acta ; 820: 139-45, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24745747

RESUMO

A highly selective and sensitive probe was developed for the field test of F(-) in environmental waters. The probe was fabricated by anchoring 4-mercaptopyridine (MPD) on AuNPs via Au-S interaction to form MPD-AuNPs, and further assembling 3-aminopropyltrimethoxysilane (APTMS) on the surface of MPD-AuNPs. The hydrolysis and cross-link of APTMS resulted in a thin monolayer of Si-O-Si protecting layer to encapsulated MPD-AuNPs. In the assay, F(-) reacted with Si-O bond and thus destroyed the outer protecting layer of the probe, and further triggered the aggregation of internal MPD-AuNPs by forming N-H-F hydrogen bond. The F(-) induced aggregation of functionalized AuNPs gave rise to significant solution color switch from red to blue, which facilitated visual assay of F(-) in the range of 1.0-7.0 µg mL(-1) by naked eyes. The probe is able to discriminate F(-) from a wide range of environmentally dominant ions, thus it can be applied to detect F(-) in drinkable water with satisfactory results that is agreed well with that of using ion chromatography.


Assuntos
Colorimetria/métodos , Fluoretos/análise , Fluoretos/química , Ouro/química , Nanopartículas Metálicas/química , Oxigênio/química , Silício/química , Hidrólise , Propilaminas/química , Piridinas/química , Silanos/química , Propriedades de Superfície
8.
J Phys Chem Lett ; 5(6): 969-75, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-26270975

RESUMO

For their unique properties, core-shell bimetal nanostructures are currently of immense interest. However, their synthesis is not a trivial work, and most works have been conducted on nanoparticles. We report herein a new synthetic tactic for submonolyer-Pt coated ultrathin Au nanowires (NWs). Besides providing a strong electromagnetic field for Raman signal enhancing, the underlined Au NWs markedly enhanced the catalytic activity of Pt atoms through increasing their dispersity and altering their electronic state. The integration of excellent SERS and high catalytic activity within Au@Pt NWs enable it work as platform for catalyzed reaction study. As a proof of principle, the self-organized Au@Pt NWs thin film is employed in operando SERS monitoring of the p-nitrothiophenol reduction process. In addition to providing kinetic data for structure-activity relationship study, the azo-intermidate independent path is also directly witnessed. This synthetic tactic can be extended to other metals, thus offering a general approach to modulate the physical/chemical properties of both core and shell metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA