Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 61(3): 1737-1752, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37775719

RESUMO

Oligodendrocytes form myelin sheaths and wrap axons of neurons to facilitate various crucial neurological functions. Oligodendrocyte progenitor cells (OPCs) persist in the embryonic, postnatal, and adult central nervous system (CNS). OPCs and mature oligodendrocytes are involved in a variety of biological processes such as memory, learning, and diseases. How oligodendrocytes are specified in different regions in the CNS, in particular in humans, remains obscure. We here explored oligodendrocyte development in three CNS regions, subpallium, brainstem, and spinal cord, in human fetuses from gestational week 8 (GW8) to GW12 using single-cell RNA sequencing. We detected multiple lineages of OPCs and illustrated distinct developmental trajectories of oligodendrocyte differentiation in three CNS regions. We also identified major genes, particularly transcription factors, which maintain status of OPC proliferation and promote generation of mature oligodendrocytes. Moreover, we discovered new marker genes that might be crucial for oligodendrocyte specification in humans, and detected common and distinct genes expressed in oligodendrocyte lineages in three CNS regions. Our study has demonstrated molecular heterogeneity of oligodendrocyte lineages in different CNS regions and provided references for further investigation of roles of important genes in oligodendrocyte development in humans.


Assuntos
Sistema Nervoso Central , Oligodendroglia , Adulto , Humanos , Diferenciação Celular/genética , Sistema Nervoso Central/fisiologia , Oligodendroglia/fisiologia , Bainha de Mielina/genética , Feto , Análise de Sequência de RNA
2.
Front Neurosci ; 17: 1322486, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249579

RESUMO

Acoustic stimuli such as music or ambient noise can significantly affect physiological and psychological health in humans. We here summarize positive effects of music therapy in premature infant distress regulation, performance enhancement, sleep quality control, and treatment of mental disorders. Specifically, music therapy exhibits promising effects on treatment of neurological disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). We also highlight regulatory mechanisms by which auditory intervention affects an organism, encompassing modulation of immune responses, gene expression, neurotransmitter regulation and neural circuitry. As a safe, cost-effective and non-invasive intervention, music therapy offers substantial potential in treating a variety of neurological conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA