Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38810258

RESUMO

Allogeneic T cells reprogram their metabolism during acute graft-versus-host disease (GVHD) in a process involving the cellular energy sensor AMP-activated protein kinase (AMPK). Deletion of AMPK in donor T cells limits GVHD but still preserves homeostatic reconstitution and graft-versus-leukemia (GVL) effects. In the current studies, murine AMPK KO T cells decreased oxidative metabolism at early timepoints post-transplant and lacked a compensatory increase in glycolysis following inhibition of the electron transport chain. Immunoprecipitation using an antibody specific to phosphorylated targets of AMPK determined that AMPK modified interactions of several glycolytic enzymes including aldolase, enolase, pyruvate kinase M (PKM), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and enzyme assays indicated impaired aldolase and GAPDH activity in AMPK KO T cells. Importantly, these changes in glycolysis correlated with both an impaired ability of AMPK KO T cells to produce significant amounts of interferon gamma (IFNγ) upon antigenic re-stimulation and a decrease in the total number of donor CD4 T cells recovered at later time points post-transplant. Human T cells lacking AMPK gave similar results, with glycolytic compensation impaired both in vitro and following expansion in vivo. GVHD results also mirrored those of the murine model, with reduced CD4/CD8 ratios and a significant improvement in disease severity. Together these data highlight a significant role for AMPK in controlling oxidative and glycolytic metabolism in both murine and human T cells and endorse further study of AMPK inhibition as a potential clinical target for future GVHD therapies.

2.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398326

RESUMO

Allogeneic T cells reprogram their metabolism during acute graft-versus-host disease (GVHD) in a process reliant on the cellular energy sensor AMP-activated protein kinase (AMPK). Deletion of AMPK in donor T cells limits GVHD but still preserves homeostatic reconstitution and graft-versus-leukemia (GVL) effects. In the current studies, murine T cells lacking AMPK decreased oxidative metabolism at early timepoints post-transplant and were also unable to mediate a compensatory increase in glycolysis following inhibition of the electron transport chain. Human T cells lacking AMPK gave similar results, with glycolytic compensation impaired both in vitro and following expansion in vivo in a modified model of GVHD. Immunoprecipitation of proteins from day 7 allogeneic T cells, using an antibody specific to phosphorylated AMPK targets, recovered lower levels of multiple glycolysis-related proteins including the glycolytic enzymes aldolase, enolase, pyruvate kinase M (PKM), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Functionally, murine T cells lacking AMPK exhibited impaired aldolase activity following anti-CD3/CD28 stimulation and a decrease in GAPDH activity on day 7 post-transplant. Importantly, these changes in glycolysis correlated with an impaired ability of AMPK KO T cells to produce significant amounts of interferon gamma (IFNγ) upon antigenic re-stimulation. Together these data highlight a significant role for AMPK in controlling oxidative and glycolytic metabolism in both murine and human T cells during GVHD and endorse further study of AMPK inhibition as a potential target for future clinical therapies. KEY POINTS: AMPK plays a key role in driving both and oxidative and glycolytic metabolism in T cells during graft-versus-host disease (GVHD)Absence of AMPK simultaneously impairs both glycolytic enzyme activity, most notably by aldolase, and interferon gamma (IFNγ) production.

3.
Immunometabolism (Cobham) ; 4(4): e00009, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36275779

RESUMO

Allogeneic stem cell transplantation is a curative therapy for multiple hematologic disorders. However, this life-saving procedure is often complicated by acute graft-versus-host disease (GVHD), where donor T cells attack tissues in the recipient's skin, liver, and gastrointestinal tract. Previous research has demonstrated that GVHD-causing T cells undergo significant metabolic reprogramming during disease pathogenesis, with an increased reliance on oxidative metabolism. This dependence makes metabolic modulation a potential approach to treat and/or prevent GVHD. Here, we provide an overview on the metabolic changes adopted by allogeneic T cells during disease initiation, highlighting the role played by AMP-activated protein kinase (AMPK) and identifying ways in which these insights might be leveraged to therapeutic advantage clinically.

4.
Nat Biomed Eng ; 5(11): 1348-1359, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34385695

RESUMO

Treating solid malignancies with chimeric antigen receptor (CAR) T cells typically results in poor responses. Immunomodulatory biologics delivered systemically can augment the cells' activity, but off-target toxicity narrows the therapeutic window. Here we show that the activity of intratumoural CAR T cells can be controlled photothermally via synthetic gene switches that trigger the expression of transgenes in response to mild temperature elevations (to 40-42 °C). In vitro, heating engineered primary human T cells for 15-30 min led to over 60-fold-higher expression of a reporter transgene without affecting the cells' proliferation, migration and cytotoxicity. In mice, CAR T cells photothermally heated via gold nanorods produced a transgene only within the tumours. In mouse models of adoptive transfer, the systemic delivery of CAR T cells followed by intratumoural production, under photothermal control, of an interleukin-15 superagonist or a bispecific T cell engager bearing an NKG2D receptor redirecting T cells against NKG2D ligands enhanced antitumour activity and mitigated antigen escape. Localized photothermal control of the activity of engineered T cells may enhance their safety and efficacy.


Assuntos
Receptores de Antígenos Quiméricos , Animais , Deriva e Deslocamento Antigênicos , Linhagem Celular Tumoral , Fatores Imunológicos , Imunoterapia Adotiva , Camundongos , Receptores de Antígenos Quiméricos/genética , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA