Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630900

RESUMO

Cucumber (Cucumis sativus, Cs) tendrils are slender vegetative organs that typically require manual removal to ensure orderly growth during greenhouse cultivation. Here, we identified cucumber tendril-less (tl), a Tnt1 retrotransposon-induced insertion mutant lacking tendrils. Map-based cloning identified the mutated gene, CsaV3_3G003590, which we designated as CsTL, which is homologous to Arabidopsis thaliana LATERAL SUPPRESSOR (AtLAS). Knocking out CsTL repressed tendril formation but did not affect branch initiation, whereas overexpression of CsTL resulted in the formation of two or more tendrils in one leaf axil. Although expression of two cucumber genes regulating tendril formation, Tendril (CsTEN) and Unusual Floral Organs (CsUFO), was significantly decreased in CsTL knockout lines, these two genes were not direct downstream targets of CsTL. Instead, CsTL physically interacted with CsTEN, an interaction that further enhanced CsTEN-mediated expression of CsUFO. In Arabidopsis, the CsTL homolog AtLAS acts upstream of REVOLUTA (REV) to regulate branch initiation. Knocking out cucumber CsREV inhibited branch formation without affecting tendril initiation. Furthermore, genomic regions containing CsTL and AtLAS were not syntenic between the cucumber and Arabidopsis genomes, whereas REV orthologs were found on a shared syntenic block. Our results revealed not only that cucumber CsTL possesses a divergent function in promoting tendril formation but also that CsREV retains its conserved function in shoot branching.

2.
Plant Cell ; 35(2): 673-699, 2023 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-36478090

RESUMO

In Petunia (Solanaceae family), self-incompatibility (SI) is regulated by the polymorphic S-locus, which contains the pistil-specific S-RNase and multiple pollen-specific S-Locus F-box (SLF) genes. SLFs assemble into E3 ubiquitin ligase complexes known as Skp1-Cullin1-F-box complexes (SCFSLF). In pollen tubes, these complexes collectively mediate ubiquitination and degradation of all nonself S-RNases, but not self S-RNase, resulting in cross-compatible, but self-incompatible, pollination. Using Petunia inflata, we show that two pollen-expressed Cullin1 (CUL1) proteins, PiCUL1-P and PiCUL1-B, function redundantly in SI. This redundancy is lost in Petunia hybrida, not because of the inability of PhCUL1-B to interact with SSK1, but due to a reduction in the PhCUL1-B transcript level. This is possibly caused by the presence of a DNA transposon in the PhCUL1-B promoter region, which was inherited from Petunia axillaris, one of the parental species of Pe. hybrida. Phylogenetic and syntenic analyses of Cullin genes in various eudicots show that three Solanaceae-specific CUL1 genes share a common origin, with CUL1-P dedicated to S-RNase-related reproductive processes. However, CUL1-B is a dispersed duplicate of CUL1-P present only in Petunia, and not in the other species of the Solanaceae family examined. We suggest that the CUL1s involved (or potentially involved) in the SI response in eudicots share a common origin.


Assuntos
Petunia , Ribonucleases , Ribonucleases/genética , Ribonucleases/metabolismo , Filogenia , Proteínas Culina/genética , Proteínas Culina/metabolismo , Polinização , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Petunia/metabolismo
3.
Plant J ; 104(5): 1348-1368, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33048387

RESUMO

Self-incompatibility in Petunia is controlled by the polymorphic S-locus, which contains S-RNase encoding the pistil determinant and 16-20 S-locus F-box (SLF) genes collectively encoding the pollen determinant. Here we sequenced and assembled approximately 3.1 Mb of the S2 -haplotype of the S-locus in Petunia inflata using bacterial artificial chromosome clones collectively containing all 17 SLF genes, SLFLike1, and S-RNase. Two SLF pseudogenes and 28 potential protein-coding genes were identified, 20 of which were also found at the S-loci of both the S6a -haplotype of P. inflata and the SN -haplotype of self-compatible Petunia axillaris, but not in the S-locus remnants of self-compatible potato (Solanum tuberosum) and tomato (Solanum lycopersicum). Comparative analyses of S-locus sequences of these three S-haplotypes revealed potential genetic exchange in the flanking regions of SLF genes, resulting in highly similar flanking regions between different types of SLF and between alleles of the same type of SLF of different S-haplotypes. The high degree of sequence similarity in the flanking regions could often be explained by the presence of similar long terminal repeat retroelements, which were enriched at the S-loci of all three S-haplotypes and in the flanking regions of all S-locus genes examined. We also found evidence of the association of transposable elements with SLF pseudogenes. Based on the hypothesis that SLF genes were derived by retrotransposition, we identified 10 F-box genes as putative SLF parent genes. Our results shed light on the importance of non-coding sequences in the evolution of the S-locus, and on possible evolutionary mechanisms of generation, proliferation, and deletion of SLF genes.


Assuntos
Petunia/genética , Proteínas de Plantas/genética , Autoincompatibilidade em Angiospermas/genética , Mapeamento Cromossômico , Genes de Plantas , Genoma de Planta , Haplótipos , Petunia/fisiologia , Pseudogenes , Ribonucleases/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Solanaceae/genética , Sequências Repetidas Terminais , Regiões não Traduzidas
4.
Plant Cell ; 30(12): 2959-2972, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30377238

RESUMO

Self-incompatibility (SI) in Petunia is regulated by a polymorphic S-locus. For each S-haplotype, the S-locus contains a pistil-specific S-RNase gene and multiple pollen-specific S-locus F-box (SLF) genes. Both gain-of-function and loss-of-function experiments have shown that S-RNase alone regulates pistil specificity in SI. Gain-of-function experiments on SLF genes suggest that the entire suite of encoded proteins constitute the pollen specificity determinant. However, clear-cut loss-of-function experiments must be performed to determine if SLF proteins are essential for SI of pollen. Here, we used CRISPR/Cas9 to generate two frame-shift indel alleles of S2 -SLF1 (SLF1 of S2 -haplotype) in S2S3 plants of P. inflata and examined the effect on the SI behavior of S2 pollen. In the absence of a functional S2-SLF1, S2 pollen was either rejected by or remained compatible with pistils carrying one of eight normally compatible S-haplotypes. All results are consistent with interaction relationships between the 17 SLF proteins of S2 -haplotype and these eight S-RNases that had been determined by gain-of-function experiments performed previously or in this work. Our loss-of-function results provide definitive evidence that SLF proteins are solely responsible for SI of pollen, and they reveal their diverse and complex interaction relationships with S-RNases to maintain SI while ensuring cross-compatibility.


Assuntos
Proteínas F-Box/metabolismo , Petunia/metabolismo , Petunia/fisiologia , Pólen/metabolismo , Pólen/fisiologia , Autoincompatibilidade em Angiospermas/fisiologia , Proteínas F-Box/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Petunia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/fisiologia , Pólen/genética , Ribonucleases/genética , Ribonucleases/metabolismo , Autoincompatibilidade em Angiospermas/genética
5.
Plant Reprod ; 31(2): 129-143, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29192328

RESUMO

KEY MESSAGE: Function of Petunia PiSSK1. Self-incompatibility (SI), an inbreeding-preventing mechanism, is regulated in Petunia inflata by the polymorphic S-locus, which houses multiple pollen-specific S-locus F-box (SLF) genes and a single pistil-specific S-RNase gene. S 2-haplotype and S 3-haplotype possess the same 17 polymorphic SLF genes (named SLF1 to SLF17), and each SLF protein produced in pollen is assembled into an SCF (Skp1-Cullin1-F-box) E3 ubiquitin ligase complex. A complete suite of SLF proteins is thought to collectively interact with all non-self S-RNases to mediate their ubiquitination and degradation by the 26S proteasome, allowing cross-compatible pollination. For each SCFSLF complex, the Cullin1 subunit (named PiCUL1-P) and Skp1 subunit (named PiSSK1), like the F-box protein subunits (SLFs), are pollen-specific, raising the possibility that they also evolved specifically to function in SI. Here we used CRISPR/Cas9-meditated genome editing to generate frame-shift indel mutations in PiSSK1 and examined the SI behavior of a T 0 plant (S 2 S 3) with biallelic mutations in the pollen genome and two progeny plants (S 2 S 2) each homozygous for one of the indel alleles and not carrying the Cas9-containing T-DNA. Their pollen was completely incompatible with pistils of seven otherwise-compatible S-genotypes, but fully compatible with pistils of an S 3 S 3 transgenic plant in which production of S3-RNase was completely suppressed by an antisense S 3-RNase gene, and with pistils of immature flower buds, which produce little S-RNase. These results suggest that PiSSK1 specifically functions in SI and support the hypothesis that SLF-containing SCF complexes are essential for compatible pollination.


Assuntos
Sistemas CRISPR-Cas , Proteínas F-Box/metabolismo , Petunia/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Ribonucleases/genética , Autoincompatibilidade em Angiospermas/genética , Alelos , Proteínas F-Box/genética , Flores/enzimologia , Flores/genética , Flores/fisiologia , Técnicas de Inativação de Genes , Petunia/enzimologia , Petunia/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Pólen/enzimologia , Pólen/genética , Pólen/fisiologia , Polinização , Complexo de Endopeptidases do Proteassoma/genética , Ribonucleases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA