Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 19(37): e2303304, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37150841

RESUMO

Fingerprints possess wide applications in personal identification, tactile perception, access control, and anti-counterfeiting. However, latent fingerprints are usually left on touched surfaces, leading to the leakage of personal information. Furthermore, tactile perception greatly decreases when fingerprints are covered by gloves. Customized fingerprints are developed to solve these issues, but it is a challenge to develop fingerprints with various customized patterns using traditional techniques due to their requiring special templates, materials, or instruments. Inspired by ripples on the lake, blowing air is used to generate surface waves on a colloidal polyelectrolyte complex, leading to vertical stratification and the accumulation of particles near the top of the film layer. As water rapidly evaporates, the viscosity of these particles significantly increases and the wave is solidified, forming fingerprint patterns. These customized fingerprints integrate functions of grasping objects, personal identification without leaving latent fingerprints and tactile perception enhancement, which can be applied in information security, anti-counterfeiting, tactile sensors, and biological engineering.

2.
iScience ; 24(6): 102652, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34159301

RESUMO

Nature-inspired materials have been actively developed for anticounterfeiting applications. Among a variety of stimuli-responsive anticounterfeiting strategies, hydrochromic materials exhibit reversible color change in response to moisture or water and have the advantage of being easy to authenticate. However, the security level of current hydrochromic anticounterfeiting materials is not sufficient for practical applications since they only exhibit a single anticounterfeiting function, where the information switches between visible and invisible. To improve the security level and efficiency of hydrochromic anticounterfeiting materials, here we developed a robust dual hydrochromic material via the self-assembly of polyurethane (PU)-polyelectrolytes colloids with which the desired information can not only switch between visible and invisible but also transform from one pattern to another within 3 s without the need of any external instruments. The bio-inspiration, material design and demonstrated hydrochromic properties might have profound implications for using colloidal complexes to make advanced anticounterfeiting materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA