Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
J Hazard Mater ; 478: 135499, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39141939

RESUMO

Uranium pollution in aquatic ecosystems poses a threat to organisms. However, the metabolism and toxicity of uranium along aquatic food chains remain unknown. Here, we established an artificial aquatic ecosystem to investigate the fate of uranium along the food chain and reveal its potential toxicity. The results displayed a dose- and time-dependent toxicity of uranium on algae, leading to cell deformation and impeding cell proliferation. When uranium-exposed algae are ingested by fish, uranium tends to concentrate in the intestinal system and bones of fish. Comparatively, direct water uranium exposure resulted in a remarkable uranium accumulation in the head, skin, and muscles of fish, suggesting different toxicity depending on distinct exposure pathways. High-level uranium pollution (20 mg L-1) intensifies the toxicity to fish through food intake compared to direct water exposure. It has also revealed that approximately 25 % and 20 % of U(VI) were reduced to lower valence forms during its accumulation in algae and fish, respectively, and over 10 % of U(IV, VI) converted to U(0) ultimately, through which uranium toxicity was mitigated due to the lower solubility and bioavailability. Overall, this study provides new insights into the fate of uranium during its delivery along the aquatic food chain and highlights the risks associated with consuming uranium-contaminated aquatic products.

2.
Int J Biol Macromol ; 277(Pt 2): 134239, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39074712

RESUMO

Nasal tamponade is a commonly employed and highly effective treatment method for preventing nasal bleeding. However, the current nasal packing hemostatic materials exhibit some limitations, such as low hemostatic efficiency, the potential for causing secondary injury when removed from the nasal cavity, limited intelligence in their design, and an inability to promote the healing of nasal mucosa wounds. Herein, we report the fabrication of a smart cellulose aerogel through the covalent cross-linking of carboxymethyl cellulose (CMC) macromolecules, while incorporating one-dimensional cellulose nanofibers (CNF) and two-dimensional MXene as reinforcing network scaffolds and conductive fillers. The abundant hydrogen and ether bonds in aerogels make them possess high elasticity in both dry and wet states, which can be compressed 100 times at 90 % deformation with a stress loss of <10 % under water. The highly elastic aerogels can be filled into the narrow nasal passages, pressuring the capillaries and reducing the amount of bleeding. Moreover, the strong interface between aerogels and blood can promote red blood cell aggregation, platelet adhesion and activation, activate intrinsic coagulation pathway and accelerate blood coagulation, resulting in excellent hemostatic ability. Furthermore, the aerogels exhibit excellent hemocompatibility and cytocompatibility, making them suitable for wound healing and capable of fully healing wounds within 15 days. Notably, the presence of MXene causes the aerogels to form a conductive network when exposed to blood, enabling them to perform real-time hemostatic monitoring without removing the dressing. This innovative biomedical aerogel, prepared from natural materials, shows excellent potential for applications in rapid nasal hemostasis.

3.
Water Res ; 260: 121960, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38908311

RESUMO

Microplastics present a significant threat to freshwater ecosystems. However, the impact of global warming on their characteristics and associated risks remains uncertain. This study collected 2793 sample sites from literature and datasets to create a new risk assessment and rank methodology, known as the Multi-characteristics Potential Ecological Risk Index (MPERI), which incorporates various microplastic characteristics, such as concentration, size distribution, color, shape, and polymer diversity. Using regression random forest models (RRF), this study predicted that a 10 °C increase would raise microplastic concentration from 12,465.34 ± 68,603.87 to 13,387.17 ± 60,692.96 particles/m3. The percentage of small-size microplastics initially decreased (from 69.10 % to 68.72 %) and then increased (from 68.72 % to 68.78 %), while the diversity of color, shape, and polymer decreased by 0.29 %, 3.24 %, and 0.17 %, respectively. Furthermore, global warming could increase the rank of microplastic risks from high (405.25 ± 528.9) to dangerous (535.37 ± 582.03) based on the MPERI method. Most countries would experience an increase in risk values, with Indonesia and Vietnam transitioning from low to medium risk, and China and Malaysia transitioning from high to dangerous risk. The feature importance assessment of the RRF model indicated that concentration was the most influential variable in determining the change in risk values. While other microplastic characteristics had a lesser impact compared to concentration, they still influenced the risk ranking. This study highlights the role of global warming in shaping microplastic risks.


Assuntos
Água Doce , Aquecimento Global , Microplásticos , Poluentes Químicos da Água , Água Doce/química , Poluentes Químicos da Água/análise , Medição de Risco , Monitoramento Ambiental
4.
BMC Med Imaging ; 24(1): 114, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760689

RESUMO

Digital dental technology covers oral cone-beam computed tomography (CBCT) image processing and low-dose CBCT dental applications. A low-dose CBCT image enhancement method based on image fusion is proposed to address the need for subzygomatic small screw insertion. Specifically, firstly, a sharpening correction module is proposed, where the CBCT image is sharpened to compensate for the loss of details in the underexposed/over-exposed region. Secondly, a visibility restoration module based on type II fuzzy sets is designed, and a contrast enhancement module using curve transformation is designed. In addition to this, we propose a perceptual fusion module that fuses visibility and contrast of oral CBCT images. As a result, the problems of overexposure/underexposure, low visibility, and low contrast that occur in oral CBCT images can be effectively addressed with consistent interpretability. The proposed algorithm was analyzed in comparison experiments with a variety of algorithms, as well as ablation experiments. After analysis, compared with advanced enhancement algorithms, this algorithm achieved excellent results in low-dose CBCT enhancement and effective observation of subzygomatic small screw implantation. Compared with the best performing method, the evaluation metric is 0.07-2 higher on both datasets. The project can be found at: https://github.com/sunpeipei2024/low-dose-CBCT .


Assuntos
Algoritmos , Parafusos Ósseos , Tomografia Computadorizada de Feixe Cônico , Humanos , Tomografia Computadorizada de Feixe Cônico/métodos , Zigoma/diagnóstico por imagem , Doses de Radiação , Processamento de Imagem Assistida por Computador/métodos , Intensificação de Imagem Radiográfica/métodos
5.
Bioresour Technol ; 400: 130702, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38615968

RESUMO

The bioconversion of lignocellulosic biomass into novel bioproducts is crucial for sustainable biorefineries, providing an integrated solution for circular economy objectives. The current study investigated a novel microwave-assisted acidic deep eutectic solvent (DES) pretreatment of waste cocoa pod husk (CPH) biomass to extract xylooligosaccharides (XOS). The sequential DES (choline chloride/citric acid, molar ratio 1:1) and microwave (450W) pretreatment of CPH biomass was effective in 67.3% xylan removal with a 52% XOS yield from total xylan. Among different XOS of varying degrees of polymerization, a higher xylobiose content corresponding to 69.3% of the total XOS (68.22 mg/g CPH) from liquid fraction was observed. Enzymatic hydrolysis of residual xylan from pretreated CPH biomass with low commercial xylanase (10 IU/g) concentration yielded 24.2% XOS. The MW-ChCl/citric acid synergistic pretreatment approach holds great promise for developing a cost-effective and environmentally friendly method contributing to the sustainable production of XOS from agricultural waste streams.


Assuntos
Biomassa , Cacau , Solventes Eutéticos Profundos , Glucuronatos , Micro-Ondas , Oligossacarídeos , Oligossacarídeos/química , Cacau/química , Cacau/metabolismo , Hidrólise , Solventes Eutéticos Profundos/química , Xilanos , Biotecnologia/métodos , Ácidos/química , Solventes/química
6.
Small ; : e2310677, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686700

RESUMO

Photocatalytic CO2 reduction technology, capable of converting low-density solar energy into high-density chemical energy, stands as a promising approach to alleviate the energy crisis and achieve carbon neutrality. Semiconductor metal oxides, characterized by their abundant reserves, good stability, and easily tunable structures, have found extensive applications in the field of photocatalysis. However, the wide bandgap inherent in metal oxides contributes to their poor efficiency in photocatalytic CO2 reduction. Defect engineering presents an effective strategy to address these challenges. This paper reviews the research progress in defect engineering to enhance the photocatalytic CO2 reduction performance of metal oxides, summarizing defect classifications, preparation methods, and characterization techniques. The focus is on defect engineering, represented by vacancies and doping, for improving the performance of metal oxide photocatalysts. This includes advancements in expanding the photoresponse range, enhancing photogenerated charge separation, and promoting CO2 molecule activation. Finally, the paper provides a summary of the current issues and challenges faced by defect engineering, along with a prospective outlook on the future development of photocatalytic CO2 reduction technology.

7.
Food Funct ; 15(9): 4805-4817, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38563411

RESUMO

Fucoxanthin, a carotenoid exclusively derived from algae, exerts its bioactivities with the modulation of the gut microbiota in mice. However, mechanisms through which fucoxanthin regulates the gut microbiota and its derived metabolites/metabolism in humans remain unclear. In this study, we investigated the effects of fucoxanthin on the gut microbiota and metabolism of non-obese individuals using an in vitro simulated digestion-fermentation cascade model. The results showed that about half of the fucoxanthin was not absorbed in the intestine, thus reaching the colon. The gut microbiota from fecal samples underwent significant changes after 48 or 72 hours in vitro fermentation. Specifically, fucoxanthin significantly enhanced the relative abundance of Bacteroidota and Parabacteroides, leading to improved functions of the gut microbiota in its development, glycan biosynthesis and metabolism as well as in improving the digestive system, endocrine system and immune system. The recovery of fucoxanthin during fermentation showed a decreasing trend with the slight bio-conversion of fucoxanthinol. Notably, fucoxanthin supplementation significantly altered metabolites, especially bile acids and indoles in the simulated human gut ecosystem. Correlation analysis indicated the involvement of the gut microbiota in the manipulation of these metabolites by fucoxanthin. Moreover, all these altered metabolites revealed the improvement in the capacity of fucoxanthin in manipulating gut metabolism, especially lipid metabolism. Overall, fucoxanthin determinedly reshaped the gut microbiota and metabolism, implying its potential health benefits in non-obese individuals.


Assuntos
Fezes , Fermentação , Microbioma Gastrointestinal , Xantofilas , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Xantofilas/metabolismo , Xantofilas/farmacologia , Fezes/microbiologia , Masculino , Adulto , Bactérias/metabolismo , Bactérias/classificação , Bactérias/genética
8.
Phys Chem Chem Phys ; 26(12): 9517-9523, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38450673

RESUMO

3,4-Bis(3-nitrofurazan-4-yl)furoxan (DNTF) is a novel energetic material with an excellent performance and has attracted considerable attention. Motivated by recent theories and experiments, we had carried out experimental and theoretical studies on the high-pressure responses of vibrational characteristics, in conjunction with structural and electronic characteristics. It is found that all observed infrared spectra peaks seem to shift towards higher frequencies. And the peaks attributed to N-Oc (coordinated oxygen atom) stretching vibrations become broader due to the decrease of lattice constants and the free region of DNTF crystals with the increase of pressure, where the a-direction is more sensitive to pressure. In addition, the non-covalent interaction between adjacent DNTF molecules in the same layer changes from the van der Waals interaction to the steric effect with the increase of pressure, and that between layers also changes from the van der Waals interaction to the π-π stacking interaction. More importantly, these results highlight that the increase of pressure may lead to the stability decrease and impact the sensitivity increase of DNTF. This study can deepen the understanding of the energetic material DNTF under high pressure and is of great significance for blasting and detonation applications of DNTF.

9.
Org Lett ; 26(2): 493-497, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38191300

RESUMO

An electrochemical hydrogen atom transfer (HAT) strategy for the direct amino-α-C-H heteroarylation of amides is described. The cheap TMSN3 acts as a hydrogen atom transfer reagent. A series of heteroarenes including quinoxalin-2(1H)-ones, 4-methylquinoline, isoquinoline, 2-methylquinoxaline, benzothiazole, etc., and various readily available amides/lactams were suitable. The reaction has the characteristics of a wide range of substrates, good regioselectivity, chemical oxidant-free conditions, etc.

10.
Plant Direct ; 7(12): e527, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38044962

RESUMO

The rapid accumulation of sequenced plant genomes in the past decade has outpaced the still difficult problem of genome-wide protein-coding gene annotation. A substantial fraction of protein-coding genes in all plant genomes are poorly annotated or unannotated and remain functionally uncharacterized. We identified unannotated proteins in three model organisms representing distinct branches of the green lineage (Viridiplantae): Arabidopsis thaliana (eudicot), Setaria viridis (monocot), and Chlamydomonas reinhardtii (Chlorophyte alga). Using similarity searching, we identified a subset of unannotated proteins that were conserved between these species and defined them as Deep Green proteins. Bioinformatic, genomic, and structural predictions were performed to begin classifying Deep Green genes and proteins. Compared to whole proteomes for each species, the Deep Green set was enriched for proteins with predicted chloroplast targeting signals predictive of photosynthetic or plastid functions, a result that was consistent with enrichment for daylight phase diurnal expression patterning. Structural predictions using AlphaFold and comparisons to known structures showed that a significant proportion of Deep Green proteins may possess novel folds. Though only available for three organisms, the Deep Green genes and proteins provide a starting resource of high-value targets for further investigation of potentially new protein structures and functions conserved across the green lineage.

11.
Heliyon ; 9(12): e22805, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38125505

RESUMO

Aim: To investigate the mechanism of p53-mediated suppression of heat stress-induced oxidative stress damage by manganese superoxide dismutase (MnSOD) in endothelial cells (ECs). Methods: Primary ECs isolated from mouse aortas were used to examine the effects of heat stress on vascular ECs viability and apoptosis. We measured MnSOD expression, reactive oxygen species (ROS) production, p53 expression, viability, and apoptosis of heat stress-induced ECs. We also tested the protective effects of MitoQ10, a mitochondrial-targeted antioxidant, and Pifithrin-α, a p53 inhibitor, in ECs from a mouse model of heat stroke. Results: Heat stress increased cellular apoptosis, ROS production, and p53 expression, while reducing cellular viability and MnSOD expression in ECs. We also showed that the suppression of MnSOD expression by heat stress in ECs was mediated by interactions between p53 and Sp1. Furthermore, MitoQ10 and Pifithrin-α alleviated heat stress-induced oxidative stress and apoptosis in ECs. Conclusion: Our results revealed that p53-mediated MnSOD downregulation is a key mechanism for heat stress-induced oxidative stress damage in ECs and indicated that MitoQ10 and Pifithrin-α could be potential therapeutic agents for heat stroke.

12.
Food Res Int ; 174(Pt 2): 113672, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37981367

RESUMO

Highland barley (HB) grains are gaining increasing popularity owing to their high nutritional merits. However, only limited information is available on the metabolic profiles of HB grains polyphenols, especially the difference of polyphenols in different colors of HB. In this study, we determined the metabolic profiles of black, blue, and white HB grains via an ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UPLC-ESI-MS/MS)-based metabolomics. A total of 402 metabolites were identified, among which 198, 62, and 189 metabolites displayed different accumulation patterns in the three comparison groups (WHB vs. BKHB, WHB vs. BEHB, BEHB vs. BKHB), respectively. In particular, flavonoids and phenolic acids contents displayed considerable differences among the three HB cultivars. The phenolics content of black HB was relatively high. Additionally, "Flavonoid biosynthesis" and "flavone and flavonol biosynthesis" were the significantly enriched pathways. In conclusion, this study provides comprehensive insights into the adequate utilization and development of novel HB-based functional foods.


Assuntos
Hordeum , Polifenóis , Espectrometria de Massas em Tandem , Metabolômica , Fenóis
13.
Org Lett ; 25(40): 7327-7331, 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37795817

RESUMO

Herein, an electrochemical hydrogen atom transfer (HAT) strategy for C(sp2)-H formylation of electron-deficient quinolines and isoquinolines is described. The cheap methanol acts as a formyl source with a catalytic amount of N-hydroxyphthalimide (NHPI) as the hydrogen atom transfer (HAT) catalyst. The advantages of this reaction are transition-metal-catalyst- and chemical-oxidant-free conditions, and the protocol could also be applied to the direct C(sp2)-H acetylation or propionylation of quinolines.

14.
Bioresour Technol ; 390: 129829, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839650

RESUMO

Recent years have seen a transition to a sustainable circular economy model that uses agro-industrial waste biomass waste to produce energy while reducing trash and greenhouse gas emissions. Biogas production from lignocellulosic biomass (LCB) is an alternative option in the hunt for clean and renewable fuels. Different approaches are employed to transform the LCB to biogas, including pretreatment, anaerobic digestion (AD), and biogas upgradation to biomethane. To maintain process stability and improve AD performance, machine learning (ML) tools are being applied in real-time monitoring, predicting, and optimizing the biogas production process. An environmental life cycle assessment approach for biogas production systems is essential to calculate greenhouse gas emissions. The current review presents a detailed overview of the utilization of agro-waste for sustainable biogas production. Different methods of waste biomass processing and valorization are discussed that contribute towards developing an efficient agro-waste to biogas-based circular economy.


Assuntos
Resíduos de Alimentos , Gases de Efeito Estufa , Resíduos Industriais , Biocombustíveis , Biomassa
15.
Plant Physiol Biochem ; 203: 108037, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37722280

RESUMO

Anthocyanins are important health-promoting flavonoid compounds that substantially contribute to fruit quality. Anthocyanin biosynthesis and most regulatory mechanisms are relatively well understood. However, the functions of anthocyanin transport genes in strawberry fruit remain unclear. In this study, a gene encoding an ATP-binding cassette (ABC) protein of type C, ABCC8, was isolated from strawberry fruits. qRT-PCR analysis demonstrated that the transcript levels of FvABCC8 were the highest and were strongly correlated with anthocyanin accumulation during strawberry fruit ripening. Transient overexpression and RNAi of FvABCC8 led to an increase and decrease in anthocyanin content in strawberry fruits, respectively. Moreover, the ABCC8 promoter was activated by MYB and bHLH transcription factors MYB10, bHLH33, and MYC1. Sucrose enhanced anthocyanin accumulation in FvABCC8-overexpressing Arabidopsis, particularly at higher concentrations. FvABCC8-overexpressing lines were less sensitive to ABA during seed germination and seedling development. These results suggest that strawberry vacuolar anthocyanin transport may be mediated by the ABCC transporter ABCC8, the expression of which may be regulated by transcription factors MYB10, bHLH33, and MYC1.

16.
J Colloid Interface Sci ; 652(Pt A): 470-479, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604058

RESUMO

CdS has emerged as a possible candidate for photocatalytic hydrogen generation. However, further improvement in the performance of the Cd metal site is challenging due to limited optimization space. To solve this limitation, in this work, the Mn-Cd dual-metal photocatalyst was synthesized by a one-step solvothermal method, and the effects of different proportions of bimetals on hydrogen production activity were systematically studied. The ingenious design of the bimetallic sites enhances the carrier separation efficiency and the built-in electric field intensity, which leads to significant improvement in the photocatalytic hydrogen production performance of MCS0.19. Density functional theory (DFT) calculations confirm that the introduction of the Mn element can drive electrons through the Fermi level, resulting in enhanced conductivity of the catalyst. Meanwhile, electron channels are built between Mn and S, which speeds up the rate of electron transfer and is conducive to improving hydrogen production activity. This work provides a technical-methodological entrance to improve the photocatalytic hydrogen production performance of dual-metal S solid solutions and also promises to open a novel approach to creating high-efficiency solid solution photocatalysts.

17.
Heliyon ; 9(7): e18316, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37519746

RESUMO

The development of sustainable biorefineries and bioeconomy has been the mandate of most of the governments with major focus on restricting the climate change concerns and finding new strategies to maintain the global food supply chain. Xylooligosaccharides (XOS) are short-chain oligomers which due to their excellent prebiotic potential in the nutraceutical sector has attracted intense research focus in the recent years. The agro-industrial crop and food waste can be utilized for the production of XOS which are derived from hemicellulose fraction (xylan) of the lignocellulosic materials. The extraction of xylan, is traditionally achieved by acidic and alkaline pretreatments which, however, have limited industrial applications. The inclusion of cutting-edge and environmentally beneficial pretreatment methods and technologies such as deep eutectic solvents and green catalysts are preferred. Moreover, the extraction of xylans from biomass using combinatorial pretreatment approaches may help in economizing the whole bioprocess. The current review outlines the factors involved in the xylan extraction and depolymerization processes from different lignocellulosic biomass and the subsequent enzymatic hydrolysis for XOS production. The different types of oligosaccharides and their prebiotic potential for the growth of healthy gut bacteria have also been explained. The introduction of modern molecular technologies has also made it possible to identify enzymes and microorganisms with the desired characteristics for usage in XOS industrial production processes.

18.
Polymers (Basel) ; 15(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299235

RESUMO

With the fast development of modern industry, heavy metal contaminant became more severe. How to remove heavy metal ions in water in a green and efficient way is a prominent problem in current environmental protection. The adsorption of cellulose aerogel as a novel heavy metal removal technology has many advantages, including abundant resources, environmental friendly, high specific surface, high porosities and without second pollution, which means it has a wide application prospect. Here, we reported a self-assembly and covalent crosslinking strategy to prepare elastic and porous cellulose aerogels using PVA and graphene and cellulose as precursor. The resulting cellulose aerogel had a low density of 12.31 mg cm-3 and excellent mechanical properties, which can recover to its initial form at 80% compressive strain. Meanwhile, the cellulose aerogel had strong adsorption capacity of Cu2+ (80.12 mg g-1), Cd2+ (102.23 mg g-1), Cr3+ (123.02 mg g-1), Co2+ (62.38 mg g-1), Zn2+ (69.55 mg g-1), and Pb2+ (57.16 mg g-1). In addition, the adsorption mechanism of the cellulose aerogel was investigated using adsorption kinetics and adsorption isotherm, and the conclusion was that the adsorption process was mainly controlled by chemisorption mechanism. Therefore, cellulose aerogel, as a kind of green adsorption material, has a very high application potential in future water treatment applications.

19.
J Hazard Mater ; 455: 131552, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37207479

RESUMO

The impacts of microplastics (MPs) prevalent in soil on the transport of pollutants were urged to be addressed, which has important implications for ecological risk assessment. Therefore, we investigated the influence of virgin/photo-aged biodegradable polylactic acid (PLA) and non-biodegradable black polyethylene (BPE) mulching films MPs on arsenic (As) transport behaviors in agricultural soil. Results showed that both virgin PLA (VPLA) and aged PLA (APLA) enhanced the adsorption of As(Ⅲ) (9.5%, 13.3%) and As(Ⅴ) (22.0%, 6.8%) due to the formation of abundant H-bonds. Conversely, virgin BPE (VBPE) reduced the adsorption of As(Ⅲ) (11.0%) and As(Ⅴ) (7.4%) in soil owing to the "dilution effect", while aged BPE (ABPE) improved arsenic adsorption amount to the level of pure soil due to newly generated O-containing functional groups being feasible to form H-bonds with arsenic. Site energy distribution analysis indicated that the dominant adsorption mechanism of arsenic, chemisorption, was not impacted by MPs. The occurrence of biodegradable VPLA/APLA MPs rather than non-biodegradable VBPE/ABPE MPs resulted in an increased risk of soil accumulating As(Ⅲ) (moderate) and As(Ⅴ) (considerable). This work uncovers the role of biodegradable/non-biodegradable mulching film MPs in arsenic migration and potential risks in the soil ecosystem, depending on the types and aging of MPs.


Assuntos
Arsênio , Poluentes do Solo , Microplásticos/química , Solo/química , Plásticos/química , Arsênio/análise , Ecossistema , Poluentes do Solo/análise , Poliésteres , Polietileno/química
20.
Sci Total Environ ; 886: 163972, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37164089

RESUMO

In view of the global climate change concerns, the society is approaching towards the development of 'green' and renewable energies for sustainable future. The non-renewable fossil fuels may be largely replaced by renewable energy sources, which could facilitate sustainable growth, energy development and lessen the reliance on conventional energy sources. The traditional methods employed in biorefineries to estimate the data values for the biofuel production systems are often complicated, time-consuming and labour-intensive. Modern machine learning (ML) technologies hold enormous potential in managing high-dimensional complex scientific tasks and improving decision-making in energy distribution networks and systems. The data-driven probabilistic ML algorithms could be applied to smart biofuel systems and networks that may reduce the cost of experimental research while providing accurate estimates of product yields. The current review demonstrates a thorough understanding of the application of different ML models to regulate and monitor the production of biofuels from waste biomass through prediction, optimization and real-time monitoring. The in-depth analysis of the most recent advancements in ML-assisted biofuel production methods, including thermochemical and biochemical processes is provided. Moreover, the ML models in addressing the issues of biofuel supply chains, case studies, scientific challenges and future direction in ML applications are also summarized.


Assuntos
Biocombustíveis , Lignina , Biotecnologia/métodos , Biomassa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA