Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38600742

RESUMO

Weed's metabolic resistance to herbicides has undermined the sustainability of herbicides and global food security. Notably, we identified an Echinochloa crus-galli (L.) P. Beauv population (R) that evolved resistance to the never-used florpyrauxifen-benzyl, in which florpyrauxifen-benzyl was metabolized faster than the susceptible E. crus-galli population (S). RNA-seq identified potential metabolism-related genes, EcCYP72A385 and EcCYP85A1, whose expression in yeast exhibited the capacity to degrade florpyrauxifen-benzyl. Region-2 in the EcCYP72A385 promoter showed significant demethylation after florpyrauxifen-benzyl treatment in the R population. DNA methyltransferase inhibitors induce EcCYP72A385 overexpression in the S population and endow it with tolerance to florpyrauxifen-benzyl. Moreover, methyltransferase-like 7A (EcMETTL7A) was overexpressed in the S population and specifically bound to the EcCYP72A385 promoter. Transgenic EcCYP72A385 in Arabidopsis and Oryza sativa L. exhibited resistance to florpyrauxifen-benzyl, whereas EcMETTL7A transgenic plants were sensitive. Overall, EcCYP72A385 is the principal functional gene for conferring resistance to florpyrauxifen-benzyl and is regulated by EcMETTL7A in E. crus-galli.

2.
Pestic Biochem Physiol ; 197: 105656, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072531

RESUMO

Barnyardgrass (Echinochloa crus-galli (L.) P. Beauv.), one of the worst weeds in paddy fields in China, has been frequently reported evolving resistance to acetyl-CoA carboxylase (ACCase) inhibiting herbicides. However, in the previous research, more attention was paid to target-site resistance (TSR) mechanisms, the non-target-site resistance (NTSR) mechanisms have not been well-established. In this study, the potential mechanism of resistance in a metamifop-resistant E. crus-galli collected from Kunshan city, Jiangsu Province, China was investigated. Dose-response assays showed that the phenotypic resistant population (JS-R) has evolved 4.3-fold resistance to metamifop compared with the phenotypic susceptible population (YN-S). The ACCase CT gene sequencing and relative ACCase gene expression levels studies showed that no mutations were detected in the ACCase CT gene in both YN-S and JS-R, and there was no significant difference in the relative ACCase gene expression between YN-S and JS-R. After the pre-processing of glutathione-S-transferase (GSTs) inhibitor NBD-Cl, the resistance level of JS-R to metamifop was reversed 18.73%. Furthermore, the GSTs activity of JS-R plants was significantly enhanced compared to that of YN-S plants. UPLC-MS/MS revealed that JS-R plants had faster metabolic rates to metamifop than YN-S plants. Meanwhile, the JS-R popultion exhibited resistant to cyhalofop-butyl and penoxsulam. In summary, this study presented a novel discovery regarding the global emergence of metabolic resistance to metamifop in E. crus-galli. The low-level resistance observed in the JS-R population was not found to be related to TSR but rather appeared to be primarily associated with the overexpression of genes in the GSTs metabolic enzyme superfamily.


Assuntos
Echinochloa , Herbicidas , Echinochloa/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Herbicidas/toxicidade , Herbicidas/metabolismo , Resistência a Herbicidas/genética
3.
Pestic Biochem Physiol ; 172: 104748, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33518041

RESUMO

Flixweed (Descurainia sophia L.) is widely distributed in winter wheat (Triticum aestivum L.) fields in the North China Plain and has evolved resistance to herbicides, including the acetolactate synthase (ALS) inhibitor florasulam. However, the florasulam resistance status of flixweed in the North China Plain is poorly understood, which hinders the integrated management of this weed in winter wheat production systems. Thus, 45 flixweed populations were collected in wheat fields in these areas, and their sensitivity to florasulam and ALS-inhibitor-resistant mutation diversity were assessed. Meanwhile, alternative herbicides/herbicide mixtures for the control of florasulam-resistant flixweed were screened and evaluated under greenhouse and field conditions. Of the populations, 30 showed florasulam resistance (RRR and RR), 9 had a high risk of evolving florasulam resistance (R?) and 6 were susceptible. These populations had 5.3 to 345.1-fold resistance to florasulam, and 4 ALS resistance mutations (P197H, P197S, P197T and W574L) were observed. The subsequent herbicide sensitivity assay showed that the SD-06 population (with ALS1 P197T and ALS2 W574L mutations) exhibited cross-resistance to all ALS inhibitors tested, but was sensitive to MCPA-Na, fluroxypyr, carfentrazone-ethyl and bipyrazone. Meanwhile, the other HN-07 population with non-target-site resistance (NTSR) also showed resistance to all tested ALS inhibitors, and it was "R?" to MCPA-Na while sensitive to fluroxypyr, carfentrazone-ethyl and bipyrazone. The field experiments were conducted at the research farm where the SD-06 population was collected, and the results suggested that florasulam at 3.75-4.5 g ai ha-1 had little efficacy (0.6-12.1%), whereas MCPA-Na + carfentrazone-ethyl (87.1-91.2%) and bipyrazone+fluroxypyr (90.1-97.8%) controlled the resistant flixweed.


Assuntos
Acetolactato Sintase , Herbicidas , Acetolactato Sintase/genética , Sulfonatos de Arila/toxicidade , China , Resistência a Herbicidas/genética , Herbicidas/toxicidade , Pirimidinas , Sulfonamidas
4.
Ecotoxicol Environ Saf ; 184: 109563, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31473562

RESUMO

A rapid and simple method based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) of sample preparation using QuEChERS was developed for detecting residues of QYR301, a new HPPD-inhibiting herbicide, in rice plant (straw), water, soil, rice hull and brown rice (BR). To eliminate matrix interference, matrix-matched calibrations with satisfactory linearity (R2 > 0.99) were used for accurate quantification. The method showed recoveries of 90.3-108.1% and relative standard deviations (RSDs) < 11%. The limits of quantification (LOQ) for QYR301 were 0.005 mg kg-1 in all five matrixes. Furthermore, the dissipation kinetics and terminal residues of QYR301 were determined at two sites in 2018. The days for 50% dissipation (DT50) of QYR301 in rice plants, water and soil were 3.6-4.4, 0.7-3.0 and 4.3-8.0 d, respectively, which indicated that QYR301 is a short-persistence herbicide. Moreover, no QYR301 residues were detected in BR, rice hull and straw collected at harvest following its application at 1.0 or 1.5 × of the recommended high rate. These results will help organizations and governments establish related principles/laws regarding the use of QYR301 in terms of environmental protection, food safety and other potential aspects.


Assuntos
Monitoramento Ambiental/métodos , Ésteres/análise , Herbicidas/análise , Oryza/química , Pirazóis/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Cromatografia Líquida , Meia-Vida , Cinética , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA