Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630900

RESUMO

Cucumber (Cucumis sativus, Cs) tendrils are slender vegetative organs that typically require manual removal to ensure orderly growth during greenhouse cultivation. Here, we identified cucumber tendril-less (tl), a Tnt1 retrotransposon-induced insertion mutant lacking tendrils. Map-based cloning identified the mutated gene, CsaV3_3G003590, which we designated as CsTL, which is homologous to Arabidopsis thaliana LATERAL SUPPRESSOR (AtLAS). Knocking out CsTL repressed tendril formation but did not affect branch initiation, whereas overexpression of CsTL resulted in the formation of two or more tendrils in one leaf axil. Although expression of two cucumber genes regulating tendril formation, Tendril (CsTEN) and Unusual Floral Organs (CsUFO), was significantly decreased in CsTL knockout lines, these two genes were not direct downstream targets of CsTL. Instead, CsTL physically interacted with CsTEN, an interaction that further enhanced CsTEN-mediated expression of CsUFO. In Arabidopsis, the CsTL homolog AtLAS acts upstream of REVOLUTA (REV) to regulate branch initiation. Knocking out cucumber CsREV inhibited branch formation without affecting tendril initiation. Furthermore, genomic regions containing CsTL and AtLAS were not syntenic between the cucumber and Arabidopsis genomes, whereas REV orthologs were found on a shared syntenic block. Our results revealed not only that cucumber CsTL possesses a divergent function in promoting tendril formation but also that CsREV retains its conserved function in shoot branching.

2.
Plant Physiol ; 193(4): 2592-2604, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37584314

RESUMO

The lateral organs of watermelon (Citrullus lanatus), including lobed leaves, branches, flowers, and tendrils, together determine plant architecture and yield. However, the genetic controls underlying lateral organ initiation and morphogenesis remain unclear. Here, we found that knocking out the homologous gene of shoot branching regulator LATERAL SUPPRESSOR in watermelon (ClLs) repressed the initiation of branches, flowers, and tendrils and led to developing round leaves, indicating that ClLs undergoes functional expansion compared with its homologs in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa), and tomato (Solanum lycopersicum). Using ClLs as the bait to screen against the cDNA library of watermelon, we identified several ClLs-interacting candidate proteins, including TENDRIL (ClTEN), PINOID (ClPID), and APETALA1 (ClAP1). Protein-protein interaction assays further demonstrated that ClLs could directly interact with ClTEN, ClPID, and ClAP1. The mRNA in situ hybridization assay revealed that the transcriptional patterns of ClLs overlapped with those of ClTEN, ClPID, and ClAP1 in the axillary meristems and leaf primordia. Mutants of ClTEN, ClPID, and ClAP1 generated by the CRISPR/Cas9 gene editing system lacked tendrils, developed round leaves, and displayed floral diapause, respectively, and all these phenotypes could be observed in ClLs knockout lines. Our findings indicate that ClLs acts as lateral organ identity protein by forming complexes with ClTEN, ClPID, and ClAP1, providing several gene targets for transforming the architecture of watermelon.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citrullus , Citrullus/genética , Arabidopsis/genética , Meristema/genética , Proteínas de Arabidopsis/metabolismo , Morfogênese , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
3.
Plant Physiol ; 192(4): 2822-2837, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37216908

RESUMO

Light signals promote photomorphogenesis and photosynthesis, allowing plants to establish photoautotrophic growth. Chloroplasts are organelles responsible for photosynthesis in which light energy is converted into chemical energy and stored as organic matter. However, how light regulates chloroplast photomorphogenesis remains unclear. Here, we isolated a cucumber (Cucumis sativus L.) mutant albino seedling (as) from an ethyl methane sulfonate mutagenesis library with an albino phenotype. Map-based cloning revealed that the mutation occurred in a component of cucumber translocon at the inner membrane of chloroplasts (CsTIC21). Subsequently, virus-induced gene silencing and CRISPR/Cas9 analyses confirmed the association between the mutant gene and the as phenotype. Loss-of-function of CsTIC21 induces malformation of chloroplast formation, leading to albinism and death in cucumber. Notably, CsTIC21 transcription was very low in etiolated seedlings grown in the dark and was upregulated by light, with expression patterns similar to those of Nuclear factor-YC (NF-YC) genes. Here, 7 cucumber NF-YC family genes (CsNF-YC) were identified, among which the expression of 4 genes (CsNF-YC1, -YC2, -YC9, and -YC13) responded to light. Gene silencing of all CsNF-YC genes in cucumber indicated that CsNF-YC2, -YC9, -YC11-1, and -YC11-2 induced distinct etiolated growth and decreased chlorophyll content. Interaction studies verified that CsNF-YC2 and CsNF-YC9 target the CsTIC21 promoter directly and promote gene transcription. These findings provide mechanistic insights on the role of the NF-YCs-TIC21 module in chloroplast photomorphogenesis promoted by light in cucumber.


Assuntos
Cucumis sativus , Cucumis sativus/genética , Cloroplastos/genética , Fotossíntese/genética , Plântula/genética , Regiões Promotoras Genéticas/genética
4.
BMC Plant Biol ; 22(1): 539, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36401157

RESUMO

BACKGROUND: Wax gourd [Benincasa hispida (Thunb) Cogn. (2n = 2x = 24)] is an economically important vegetable crop of genus Benincasa in the Cucurbitaceae family. Fruit is the main consumption organ of wax gourd. The mature fruit cuticular wax (MFCW) is an important trait in breeding programs, which is also of evolutionary significance in wax gourd. However, the genetic architecture of this valuable trait remains unrevealed. RESULTS: In this study, genetic analysis revealed that the inheritance of MFCW was controlled by a single gene, with MFCW dominant over non-MFCW, and the gene was primarily named as BhWAX. Genome-wide association study (GWAS) highlighted a 1.1 Mb interval on chromosome 9 associated with MFCW in wax gourd germplasm resources. Traditional fine genetic mapping delimited BhWAX to a 0.5 Mb region containing 12 genes. Based on the gene annotation, expression analysis and co-segregation analysis, Bhi09G001428 that encodes a membrane bound O-acyltransferase (MBOAT) was proposed as the candidate gene for BhWAX. Moreover, it was demonstrated that the efficiency of a cleaved amplified polymorphic sequences (CAPS) marker in the determination of MFCW in wax gourd reached 80%. CONCLUSIONS: In closing, the study identified the candidate gene controlling MFCW and provided an efficient molecular marker for the trait in wax gourd for the first time, which will not only be beneficial for functional validation of the gene and marker-assisted breeding of wax gourd, but also lay a foundation for analysis of its evolutionary meaning among cucurbits.


Assuntos
Cucurbitaceae , Estudo de Associação Genômica Ampla , Frutas/genética , Verduras/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Cucurbitaceae/genética , Ceras
5.
Front Plant Sci ; 13: 961864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36161030

RESUMO

Wax gourd is an important vegetable crop of the Cucurbitaceae family. According to the shape and structure of the seed coat, the seeds of the wax gourd can be divided into bilateral and unilateral. Bilateral seeds usually germinate quickly and have a high germination rate than unilateral seeds. Thereby, wax gourd varieties with bilateral seeds are more welcomed by seed companies and growers. However, the genetic basis and molecular mechanism regulating seed shape remain unclear in the wax gourd. In this study, the genetic analysis demonstrated that the seed shape of wax gourd was controlled by a single gene, with bilateral dominant to unilateral. Combined with genetic mapping and genome-wide association study, Bhi04G000544 (BhYAB4), encoding a YABBY transcription factor, was identified as the candidate gene for seed shape determination in the wax gourd. A G/A single nucleotide polymorphism variation of BhYAB4 was detected among different germplasm resources, with BhYAB4G specifically enriched in bilateral seeds and BhYAB4A in unilateral seeds. The G to A mutation caused intron retention and premature stop codon of BhYAB4. Expression analysis showed that both BhYAB4G and BhYAB4A were highly expressed in seeds, while the nuclear localization of BhYAB4A protein was disturbed compared with that of BhYAB4G protein. Finally, a derived cleaved amplified polymorphic sequence marker that could efficiently distinguish between bilateral and unilateral seeds was developed, thereby facilitating the molecular marker-assisted breeding of wax gourd cultivars.

6.
Plant Sci ; 323: 111394, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35905897

RESUMO

In triploid watermelon (Citrullus lanatus), the homologous chromosomes of germ cells are disorder during meiosis, resulting in the failure of seeds formation and producing seedless fruit. Therefore, mutating the genes specifically functioning in meiosis may be an alternative way to achieve seedless watermelon. REC8, as a key component of the cohesin complex in meiosis, is dramatically essential for sister chromatid cohesion and chromosome segregation. However, the role of REC8 in meiosis has not yet been characterized in watermelon. Here, we identified ClREC8 as a member of RAD21/REC8 family with a high expression in male and female flowers of watermelon. In situ hybridization analysis showed that ClREC8 was highly expressed at the early stage of meiosis during pollen formation. Knocking out ClREC8 in watermelon led to decline of pollen vitality. After pollinating with foreign normal pollen, the ovaries of ClREC8 knockout lines could inflate normally but failed to form seeds. We further compared the meiosis chromosomes of pollen mother cells in different stages between the knockout lines and the corresponding wild type. The results indicated that ClREC8 was required for the monopolar orientation of the sister kinetochores in Meiosis I. Additionally, transcriptome sequencing (RNA-seq) analysis between WT and the knockout lines revealed that the disruption of ClREC8 caused the expression levels of mitosis-related genes and meiosis-related genes to decrease. Our results demonstrated ClREC8 has a specific role in Meiosis I of watermelon germ cells, and loss-of-function of the ClREC8 led to seedless fruit, which may provide an alternative strategy to breed cultivars with seedless watermelon.


Assuntos
Proteínas Cromossômicas não Histona , Citrullus , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Citrullus/genética , Citrullus/metabolismo , Meiose/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Melhoramento Vegetal
7.
BMC Plant Biol ; 20(1): 386, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32831013

RESUMO

BACKGROUND: Fruit skin color play important role in commercial value of cucumber, which is mainly determined by the content and composition of chlorophyll and anthocyanins. Therefore, understanding the related genes and metabolomics involved in composition of fruit skin color is essential for cucumber quality and commodity value. RESULTS: The results showed that chlorophyll a, chlorophyll b and carotenoid content in fruit skin were higher in Lv (dark green skin) than Bai (light green skin) on fruit skin. Cytological observation showed more chloroplast existed in fruit skin cells of Lv. A total of 162 significantly different metabolites were found between the fruit skin of the two genotypes by metabolome analysis, including 40 flavones, 9 flavanones, 8 flavonols, 6 anthocyanins, and other compounds. Crucial anthocyanins and flavonols for fruit skin color, were detected significantly decreased in fruit skin of Bai compared with Lv. By RNA-seq assay, 4516 differentially expressed genes (DEGs) were identified between two cultivars. Further analyses suggested that low expression level of chlorophyll biosynthetic genes, such as chlM, por and NOL caused less chlorophylls or chloroplast in fruit skin of Bai. Meanwhile, a predicted regulatory network of anthocyanin biosynthesis was established to illustrate involving many DEGs, especially 4CL, CHS and UFGT. CONCLUSIONS: This study uncovered significant differences between two cucumber genotypes with different fruit color using metabolome and RNA-seq analysis. We lay a foundation to understand molecular regulation mechanism on formation of cucumber skin color, by exploring valuable genes, which is helpful for cucumber breeding and improvement on fruit skin color.


Assuntos
Antocianinas/metabolismo , Clorofila A/metabolismo , Cor , Cucumis sativus/genética , Cucumis sativus/metabolismo , Frutas/genética , Frutas/metabolismo , Antocianinas/genética , Clorofila A/genética , Metaboloma , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA