Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 458: 140278, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38964103

RESUMO

High-content sugar in honey frequently results in severe matrix effects and requires complex pretreatment prior to analysis, posing significant challenges for the rapid analysis of honey. In this study, the reversal polarity nano-electrospray ionization mass spectrometry (RP-Nano-ESI-MS) analysis was developed for the direct evaluation of honey samples. The results indicated that RP-Nano-ESI-MS significantly mitigated the matrix effects induced by high-content sugar through the implementation of online desalting. Furthermore, RP-Nano-ESI-MS has been proven capable of not only differentiating acacia honey adulterated with 10% rape honey, but also effectively distinguishing six types of honey and exhibiting remarkable proficiency in detecting honey adulteration and botanical traceability. Additionally, RP-Nano-ESI-MS exhibited strong quantitative abilities, effectively characterizing variations in amino acid composition among six types of honey with high stability and reproducibility. Our studies underscore the significant potential of RP-Nano-ESI-MS for its rapid in situ analysis of sugar-rich foods like honey, especially in their authenticity verification.

2.
Heliyon ; 10(10): e31620, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38831806

RESUMO

Background: Oxidative stress plays a significant role in the pathogenesis of many retinal diseases. However, only a few systematic bibliometric studies have been conducted. This study aims to visualize research hotspots and developmental trends in oxidative stress in the retina from 2013 to 2023 by analyzing bibliometric data. Methods: We retrieved papers on oxidative stress in the retina published between 2013 and 2023 from the Web of Science Core Collection. The data were visually analyzed using CiteSpace and VOSviewer software. Results: The total number of 2100 publications were included in the analysis. An overall increasing trend in the number of publications is observed between 2013 and 2023. Chinese publications were the most contributive, but United States publications were the most influential. Shanghai Jiao Tong University was the most active and prolific institution. Antioxidants was the most productive journal, while Oxidative Medicine and Cellular Longevity were the journals with the most-cited articles. Kaarniranta K, from Finland, was the most productive and influential author. Examination of co-cited references revealed that researchers in the field are primarily focused on investigating the molecular mechanisms, preventive strategies, and utilization of antioxidants to address retinal oxidative damage. Diabetic retinopathy, endothelial growth factor, retinitis pigmentosa, retinal degeneration, antioxidant response, retinal ganglion cells, and genes are the research hotspots in this field. Metabolism, sodium iodate, and system are at the forefront of research in this field. Conclusion: Attention toward retinal oxidative stress has increased over the past decade. Current research focuses on the mechanisms of retinal diseases related to oxidative stress and the experimental study of antioxidants in retinal diseases, which may continue to be a trend in the future.

3.
J Agric Food Chem ; 72(25): 14165-14176, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38872428

RESUMO

Atractylodes macrocephala Koidz, a traditional Chinese medicine, contains atractylenolide I (ATR-I), which has potential anticancer, anti-inflammatory, and immune-modulating properties. This study evaluated the therapeutic potential of ATR-I for indomethacin (IND)-induced gastric mucosal lesions and its underlying mechanisms. Noticeable improvements were observed in the histological morphology and ultrastructures of the rat gastric mucosa after ATR-I treatment. There was improved blood flow, a significant decrease in the expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, and IL-18, and a marked increase in prostaglandin E2 (PGE2) expression in ATR-I-treated rats. Furthermore, there was a significant decrease in the mRNA and protein expression levels of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), apoptosis-associated speck-like protein (ASC), cysteinyl aspartate specific proteinase-1 (caspase-1), and nuclear factor-κB (NF-κB) in rats treated with ATR-I. The results show that ATR-I inhibits the NLRP3 inflammasome signaling pathway and effectively alleviates local inflammation, thereby improving the therapeutic outcomes against IND-induced gastric ulcers in rats.


Assuntos
Atractylodes , Mucosa Gástrica , Indometacina , Inflamassomos , Lactonas , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Sesquiterpenos , Úlcera Gástrica , Animais , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Indometacina/efeitos adversos , Úlcera Gástrica/tratamento farmacológico , Úlcera Gástrica/induzido quimicamente , Úlcera Gástrica/metabolismo , Ratos , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Lactonas/farmacologia , Lactonas/química , Inflamassomos/metabolismo , Inflamassomos/genética , Inflamassomos/efeitos dos fármacos , Masculino , Atractylodes/química , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , NF-kappa B/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/imunologia , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/imunologia , Caspase 1/genética , Caspase 1/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Interleucina-6/imunologia , Interleucina-18/genética , Interleucina-18/metabolismo
4.
Int Immunopharmacol ; 135: 112281, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38762925

RESUMO

The administration of nonsteroidal anti-inflammatory drugs (NSAIDs) may cause significant intestinal alteration and inflammation and lead to the occurrence of inflammatory diseases resembling duodenal ulcers. Astragaloside IV (AS-IV) is a glycoside of cycloartane-type triterpene isolated from the dried root of Astragalus membranaceus (Fisch.) Bge. (family Fabaceae), and has been used for ameliorating the NSAID-induced inflammation in the small intestine. The present study aimed to investigate the effects of AS-IV on indomethacin (IND)-induced inflammation in the small intestine of rats and its underlying mechanisms. Hematoxylin-eosin (H&E) staining, transmission and scanning electron microscopy were carried out to observe the surface morphology and ultrastructure of the small intestinal mucosa. Immunofluorescence and ELISA tests were employed to detect the expressions of NLRP3, ASC, caspase-1, and NF-κB proteins, as well as inflammatory factors IL-1ß and IL-18, to uncover potential molecular mechanisms responsible for mitigating small intestinal inflammation. The results demonstrated that AS-IV significantly decreased the ulcer index, improved the surface morphology and microstructure of the small intestinal mucosa, and increased mucosal blood flow. Molecular docking revealed a strong and stable binding capacity of AS-IV to NLRP3, ASC, caspase-1, and NF-κB proteins. Further experimental validation exhibited that AS-IV markedly decreased levels of IL-1ß and IL-18, and inhibited the protein expression of NLRP3, ASC, caspase-1, and NF-κB. Our data demonstrate that AS-IV ameliorates IND-induced intestinal inflammation in rats by inhibiting the activation of NLRP3 inflammasome and reducing the release of IL-1ß and IL-18, thereby representing a promising therapy for IND-induced intestinal inflammation.


Assuntos
Indometacina , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ratos Sprague-Dawley , Saponinas , Triterpenos , Animais , Saponinas/farmacologia , Saponinas/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Masculino , Ratos , Anti-Inflamatórios não Esteroides/farmacologia , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Intestino Delgado/metabolismo , Intestino Delgado/imunologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia , Mucosa Intestinal/metabolismo , NF-kappa B/metabolismo , Interleucina-1beta/metabolismo , Simulação de Acoplamento Molecular , Caspase 1/metabolismo , Inflamação/tratamento farmacológico , Inflamação/induzido quimicamente
5.
Food Res Int ; 186: 114379, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729702

RESUMO

The relationship between the chemical composition and quality of Lushan Yunwu tea (LYT) from different geographical origins is not clear. Sensory evaluation, metabolomics analyses combined with chemometrics were conducted on LYT from 8 different geographical origins, and altitude was identified as the main factor responsible for the differences among LYT. A total of 32 non-volatile and 27 volatile compounds were identified as marker metabolites to distinguish the origins of high altitudes from those of low altitudes. LYT samples from higher altitude areas contained more free amino acids, sugars, and organic acids, and less catechins, which may contribute to the reduction of bitterness and astringency and the enhancement of umami. The contents of geranylacetone, ethyl hexanoate, ethyl caprylate, 3-carene, d-cadinene, linalool, nerol, and nerolidol in high altitude areas were higher than those in low altitude areas, indicating that LYT from high altitude had strong floral and fruity aroma. The altitudes were positively correlated with pH value, total flavonoids, soluble protein, total free amino acids, and the antioxidant capacities of the LYT. This study provided a theoretical basis for the study of the effect of altitude on tea quality.


Assuntos
Altitude , Metabolômica , Chá , Compostos Orgânicos Voláteis , Chá/química , Compostos Orgânicos Voláteis/análise , Humanos , Odorantes/análise , Paladar , Antioxidantes/análise , Camellia sinensis/química , Aminoácidos/análise , Flavonoides/análise , Masculino , China , Feminino
6.
Phytopathology ; 114(6): 1380-1392, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38349804

RESUMO

Citrus Huanglongbing, one of the most devastating citrus diseases, is caused by 'Candidatus Liberibacter asiaticus' (CLas). Polyamines are aliphatic nitrogen-containing compounds that play important roles in disease resistance and are synthesized primarily by two pathways: an arginine decarboxylation pathway and an ornithine decarboxylation pathway. However, it is unclear whether polyamines play a role in the tolerance of citrus to infection by CLas and, if so, whether one or both of the core polyamine metabolic pathways are important. We used high-performance liquid chromatography and ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry to detect the contents of nine polyamine metabolism-related compounds in six citrus cultivars with varying levels of tolerance to CLas. We also systematically detected the changes in polyamine metabolism-related compounds and H2O2 contents and compared the gene expression levels and the activities of enzymes involved in the polyamine metabolic pathway among healthy, asymptomatic, and symptomatic leaves of Newhall navel oranges infected with CLas. The tolerant and moderately tolerant varieties showed higher polyamine metabolism-related compound levels than those of susceptible varieties. Compared with the healthy group, the symptomatic group showed significantly increased contents of arginine, ornithine, γ-aminobutyric acid, and putrescine by approximately 180, 19, 1.5, and 0.2 times, respectively, and upregulated expression of biosynthetic genes. Arginase and ornithine decarboxylase enzyme activities were the highest in the symptomatic group, whereas arginine decarboxylase and agmatine deiminase enzyme activities were the highest in the asymptomatic group. The two polyamine biosynthetic pathways showed different trends with the increase of the CLas titer, indicating that polyamines were mainly synthesized through the arginine decarboxylase pathway in the asymptomatic leaves and were synthesized via the ornithine decarboxylase pathway in symptomatic leaves. These findings provide new insight into the changes in polyamine metabolism in citrus infected with CLas.


Assuntos
Citrus , Doenças das Plantas , Poliaminas , Rhizobiaceae , Poliaminas/metabolismo , Doenças das Plantas/microbiologia , Citrus/microbiologia , Rhizobiaceae/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/metabolismo , Peróxido de Hidrogênio/metabolismo , Ornitina Descarboxilase/metabolismo , Ornitina Descarboxilase/genética , Liberibacter/fisiologia , Regulação da Expressão Gênica de Plantas , Redes e Vias Metabólicas
7.
Food Chem ; 441: 138388, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38219368

RESUMO

Streptococcus pyogenes (GAS) is one of the most virulent and infectious bacteria, severely threatening health and lives of people worldwide. Honey has been proven to have effective capability against GAS, but the underlying metabolites and mechanisms are still unclear. In this study, the Castanopsis honey (CH) showed significant antibacterial ability compared to other seven kinds of honey and artificial honey. Furthermore, the antibacterial metabolites and their targets in CH were screened by combined method of metabolomics, network pharmacology, and molecular docking. The results suggested that the activities of two antioxidant enzymes, glutathione peroxidase and tyrosyl tRNA synthetase identified as the primary targets, were significantly inhibited by CH, which significantly increased the level of oxidative stress in GAS. The results revealed a possibly novel mechanism regulating the oxidative stress and inhibits the growth in bacteria, providing strong experimental evidence to support the further development of CH as a novel antibacterial agent.


Assuntos
Mel , Streptococcus pyogenes , Humanos , Farmacologia em Rede , Simulação de Acoplamento Molecular , Antibacterianos/farmacologia , Metabolômica
8.
J Environ Sci (China) ; 138: 46-61, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135412

RESUMO

It is important to investigate whether combining two modification strategies has a synergistic effect on the activity of photocatalysts. In this manuscript, Fe-doped BiOBr/Bi2WO6 heterojunctions were synthesized by a one-pot solvothermal method, and excellent photocatalytic performance was obtained for the degradation of tetracycline hydrochloride (TCH) in water without the addition of surfactant. Combining experiments and characterization, the synergistic effect between Fe ion doping and the BiOBr/Bi2WO6 heterojunction was elucidated. The Fe/BiOBr/Bi2WO6 composite photocatalyst had a beneficial void structure, enhanced visible light response, and could inhibit the recombination of photogenerated support well, which improved the photocatalytic activity. The presented experiments demonstrate that Fe/BiOBr/Bi2WO6 removes 97% of TCH from aqueous solution, while pure BiOBr and Bi2WO6 only remove 56% and 65% of TCH, respectively. Finally, the separation and transfer mechanisms of photoexcited carriers were determined in conjunction with the experimental results. This study provides a new direction for the design of efficient photocatalysts through the use of a dual co-modification strategy.


Assuntos
Surfactantes Pulmonares , Tetraciclina , Luz , Tensoativos , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA