Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(23): 24633-24642, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882097

RESUMO

SrFe1-x Si x O3-δF y cathode materials (x = 0.05, 0.1, 0.15; y = 0, 0.1, 0.5) were prepared via a solid-state method. X-ray diffraction results show that the synthesized F doping samples were perovskite structure. X-ray photoelectron spectroscopy findings show that F- anions were doped into SrFe1-x Si x O3-δ. Transmission electron microscopy and energy-dispersive spectroscopy were performed to analyze the microstructure and element distribution in the materials, respectively. Double-layer composite cathode symmetric cells were prepared through a screen printing method. Scanning electron microscopy images revealed that the double-layer composite cathode adhered well to the electrolyte. The doping with F- can increase the coefficient of thermal expansion of SrFe1-x Si x O3-δ. The electrochemical impedance spectroscopy results indicate that the oxygen transport capacity of the SrFe0.95Si0.05O3-δ material can be improved by doping with F-, but such a method can decrease the oxygen transport capacity of SrFe0.9Si0.1O3-δ. At 800 °C, the peak power density of the single cell supported by an anode and SrFe0.9Si0.1O3-δF0.1 as the cathode reached 388.91 mW/cm2. Thus, the incorporation of F- into SrFe1-x Si x O3-δ cathode materials can improve their electrochemical performance and enable their application as cathode materials for solid-oxide fuel cells.

2.
Planta ; 260(1): 24, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38858226

RESUMO

MAIN CONCLUSION: The resurrection plant Boea hygrometrica selectively recruits and assembles drought-specific microbial communities across the plant-soil compartments, which may benefit plant growth and fitness under extreme drought conditions. Plant-associated microbes are essential for facilitating plant growth and fitness under drought stress. The resurrection plant Boea hygrometrica in natural habitats with seasonal rainfall can survive rapid desiccation, yet their interaction with microbiomes under drought conditions remains unexplored. This study examined the bacterial and fungal microbiome structure and drought response across plant-soil compartments of B. hygrometrica by high-throughput amplicon sequencing of 16S rRNA gene and internal transcribed spacer. Our results demonstrated that the diversity, composition, and functional profile of the microbial community varied considerably across the plant-soil compartments and were strongly affected by drought stress. Bacterial and fungal diversity was significantly reduced from soil to endosphere and belowground to aboveground compartments. The compartment-specific enrichment of the dominant bacteria phylum Cyanobacteriota and genus Methylorubrum in leaf endosphere, genera Pseudonocardia in rhizosphere soil and Actinoplanes in root endosphere, and fungal phylum Ascomycota in the aboveground compartments and genera Knufia in root endosphere and Cladosporium in leaf endosphere composed part of the core microbiota with corresponding enrichment of beneficial functions for plant growth and fitness. Moreover, the recruitment of dominant microbial genera Sphingosinicella and Plectosphaerella, Ceratobasidiaceae mycorrhizal fungi, and numerous plant growth-promoting bacteria involving nutrient supply and auxin regulation was observed in desiccated B. hygrometrica plants. Our results suggest that the stable assembled drought-specific microbial community of B. hygrometrica may contribute to plant survival under extreme environments and provide valuable microbial resources for the microbe-mediated drought tolerance enhancement in crops.


Assuntos
Secas , Microbiota , Microbiologia do Solo , Microbiota/genética , Estresse Fisiológico , Bactérias/genética , Bactérias/classificação , Raízes de Plantas/microbiologia , Raízes de Plantas/genética , RNA Ribossômico 16S/genética , Fungos/fisiologia , Fungos/genética , Rizosfera , Brassicaceae/microbiologia , Brassicaceae/genética , Brassicaceae/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/genética
3.
Org Lett ; 26(7): 1348-1352, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38341869

RESUMO

The emergence of multidrug-resistant Gram-negative pathogens poses a serious threat to global health. Gram-negative bacteria have become increasingly recognized as underexplored sources of Gram-negative-active cationic lipopeptide (CLP) antibiotics. We systematically screened 8982 sequenced genomes from 42 underexplored Gram-negative bacterial genera and identified eight potential CLP biosynthetic gene clusters. Their predicted products were rapidly accessed by solid-phase total synthesis, which led to the novel antibiotic chospeptin with good activities against clinically isolated colistin-resistant Gram-negative pathogens.


Assuntos
Antibacterianos , Lipopeptídeos , Antibacterianos/farmacologia , Lipopeptídeos/farmacologia , Farmacorresistência Bacteriana Múltipla , Colistina/farmacologia , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
4.
Planta ; 259(2): 47, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285274

RESUMO

MAIN CONCLUSION: Substantial advancements have been made in our comprehension of vegetative desiccation tolerance in resurrection plants, and further research is still warranted to elucidate the mechanisms governing distinct cellular adaptations. Resurrection plants are commonly referred to as a small group of extremophile vascular plants that exhibit vegetative desiccation tolerance (VDT), meaning that their vegetative tissues can survive extreme drought stress (> 90% water loss) and subsequently recover rapidly upon rehydration. In contrast to most vascular plants, which typically employ water-saving strategies to resist partial water loss and optimize water absorption and utilization to a limited extent under moderate drought stress, ultimately succumbing to cell death when confronted with severe and extreme drought conditions, resurrection plants have evolved unique mechanisms of VDT, enabling them to maintain viability even in the absence of water for extended periods, permitting them to rejuvenate without harm upon water contact. Understanding the mechanisms associated with VDT in resurrection plants holds the promise of expanding our understanding of how plants adapt to exceedingly arid environments, a phenomenon increasingly prevalent due to global warming. This review offers an updated and comprehensive overview of recent advances in VDT within resurrection plants, with particular emphasis on elucidating the metabolic and cellular adaptations during desiccation, including the intricate processes of cell wall folding and the prevention of cell death. Furthermore, this review highlights existing unanswered questions in the field, suggests potential avenues for further research to gain deeper insights into the remarkable VDT adaptations observed in resurrection plants, and highlights the potential application of VDT-derived techniques in crop breeding to enhance tolerance to extreme drought stress.


Assuntos
Craterostigma , Traqueófitas , Craterostigma/genética , Dessecação , Melhoramento Vegetal , Morte Celular , Água
5.
Plant Cell Physiol ; 65(3): 372-389, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38123450

RESUMO

Heat-shock transcription factors (HSFs) are crucial for regulating plant responses to heat and various stresses, as well as for maintaining normal cellular functions and plant development. HSFA9 and HSFA2 are two of the Arabidopsis class A HSFs and their expressions are dramatically induced in response to heat shock (HS) stress among all 21 Arabidopsis HSFs. However, the detailed biological roles of their cooperation have not been fully characterized. In this study, we employed an integrated approach that combined bioinformatics, molecular genetics and computational analysis to identify and validate the molecular mechanism that controls seed longevity and thermotolerance in Arabidopsis. The acquisition of tolerance to deterioration was accompanied by a significant transcriptional switch that involved the induction of primary metabolism, reactive oxygen species and unfolded protein response, as well as the regulation of genes involved in response to dehydration, heat and hypoxia. In addition, the cis-regulatory motif analysis in normal stored and controlled deterioration treatment (CDT) seeds confirmed the CDT-repressed genes with heat-shock element (HSE) in their promoters. Using a yeast two-hybrid and molecular dynamic interaction assay, it is shown that HSFA9 acted as a potential regulator that can interact with HSFA2. Moreover, the knock-out mutants of both HSFA9 and HSFA2 displayed a significant reduction in seed longevity. These novel findings link HSF transcription factors with seed deterioration tolerance and longevity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Termotolerância , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Proteínas de Choque Térmico/genética , Resposta ao Choque Térmico/genética , Sementes/metabolismo , Termotolerância/genética , Fatores de Transcrição/metabolismo
6.
ACS ES T Eng ; 3(9): 1370-1380, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37705671

RESUMO

In this study, we have developed an innovative thermal degradation strategy for treating per- and polyfluoroalkyl substance (PFAS)-containing solid materials. Our strategy satisfies three criteria: the ability to achieve near-complete degradation of PFASs within a short timescale, nonselectivity, and low energy cost. In our method, a metallic reactor containing a PFAS-laden sample was subjected to electromagnetic induction that prompted a rapid temperature rise of the reactor via the Joule heating effect. We demonstrated that subjecting PFASs (0.001-12 µmol) to induction heating for a brief duration (e.g., <40 s) resulted in substantial degradation (>90%) of these compounds, including recalcitrant short-chain PFASs and perfluoroalkyl sulfonic acids. This finding prompted us to conduct a detailed study of the thermal phase transitions of PFASs using thermogravimetric analysis and differential scanning calorimetry (DSC). We identified at least two endothermic DSC peaks for anionic, cationic, and zwitterionic PFASs, signifying the melting and evaporation of the melted PFASs. Melting and evaporation points of many PFASs were reported for the first time. Our data suggest that the rate-limiting step in PFAS thermal degradation is linked with phase transitions (e.g., evaporation) occurring on different time scales. When PFASs are rapidly heated to temperatures similar to those produced during induction heating, the evaporation of melted PFAS slows down, allowing for the degradation of the melted PFAS.

7.
Environ Sci Technol ; 57(23): 8796-8807, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37195265

RESUMO

In this study, we investigated the thermal decomposition mechanisms of perfluoroalkyl ether carboxylic acids (PFECAs) and short-chain perfluoroalkyl carboxylic acids (PFCAs) that have been manufactured as replacements for phased-out per- and polyfluoroalkyl substances (PFAS). C-C, C-F, C-O, O-H, and C═C bond dissociation energies were calculated at the M06-2X/Def2-TZVP level of theory. The α-C and carboxyl-C bond dissociation energy of PFECAs declines with increasing chain length and the attachment of an electron-withdrawing trifluoromethyl (-CF3) group to the α-C. Experimental and computational results show that the thermal transformation of hexafluoropropylene oxide dimer acid to trifluoroacetic acid (TFA) occurs due to the preferential cleavage of the C-O ether bond close to the carboxyl group. This pathway produces precursors of perfluoropropionic acid (PFPeA) and TFA and is supplemented by a minor pathway (CF3CF2CF2OCFCF3COOH → CF3CF2CF2· + ·OCFCF3COOH) through which perfluorobutanoic acid (PFBA) is formed. The weakest C-C bond in PFPeA and PFBA is the one connecting the α-C and the ß-C. The results support (1) the C-C scission in the perfluorinated backbone as an effective PFCA thermal decomposition mechanism and (2) the thermal recombination of radicals through which intermediates are formed. Additionally, we detected a few novel thermal decomposition products of studied PFAS.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Éter , Ácidos Carboxílicos/química , Poluentes Químicos da Água/análise , Éteres , Fluorocarbonos/análise
8.
J Hazard Mater ; 436: 129313, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35739805

RESUMO

Pyrolysis as a thermochemical technology is commonly used in waste management and remediation of organic-contaminated soil. This study, for the first time, investigated fluorinated and non-fluorinated compounds emitted from per- and polyfluoroalkyl substances (PFAS) and relevant products upon pyrolysis (200-890 °C) and their formation mechanisms. Approximately 30 non-fluorinated compounds were detected from PFAS-containing aqueous film-forming foams (AFFFs) and commercial surfactant concentrates (SCs) after heating, including glycols and glycol ethers that were predominant at 200 °C. Oxygen (e.g., 1,4-dioxane) and nitrogen heterocycles and benzene were unexpectedly observed at higher temperatures (300-890 °C), which were likely formed as a consequence of the thermal dehydration, dehydrogenation, and intermolecular cyclization of glycols and glycol ethers. Fluorinated volatiles in six major classes were detected at low and moderate temperatures (200-500 °C), including perfluoroalkenes, perfluoroalkyl aldehydes, fluorotelomer alcohols, and polyfluorinated alkanes/alkenes. Several features of the pyrolyses of PFAS suggest that the underlying decomposition mechanism is radical-mediated. Perfluoroheptene thermally decomposed at 200 °C to shorter-chain homologues following a radical chain-scission mechanism. Most of these volatiles observed at low/moderate temperatures were not detected at 890 °C. Ultra-short-chain fluorinated greenhouse gases (e.g., perfluoromethane) were not found.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Éteres , Fluorocarbonos/análise , Glicóis , Pirólise , Água , Poluentes Químicos da Água/análise
9.
Plant Physiol Biochem ; 170: 23-35, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844115

RESUMO

Drought is one of the major abiotic stresses that threaten wheat production worldwide, especially in the Mongolian Plateau and adjacent regions. This study aims to find local wheat varieties with high yields and drought resistance at various developmental stages based on agronomic traits and drought resistance indices analysis and explore the underlining molecular mechanisms by transcriptome analysis. Our results revealed that drought stress started at the seedling stage has a greater impact on crop yields. Four types of drought responses were found among the tested varieties. Type 1 and type 2 show low tolerance to drought stress despite high or low yield in control condition, type 3 exhibits high yield under control condition but dropped significantly after drought, and type 4 displays relatively high and stable yields under control and drought conditions. Transcriptome analysis performed with the representative varieties of the four types revealed GO terms and KEGG pathways enriched among drought-triggered differential expressed genes (DEGs). A network containing 18 modules was constructed using weighted gene co-expression analysis (WGCNA). Ten modules were significantly correlated to yield by module-trait correlation, and 3 modules showed Darkhan 144 specific gene expression patterns. C2H2 zinc finger factor-recognized motifs were identified from the promoters of genes in these modules. qRT-PCR confirmed several key DEGs with specific expression patterns and physiological measurements validated the relatively low oxidative damage and high antioxidant capacity in the drought tolerant variety Dankhan 144. These findings provide an important basis for local agriculture and breeding of drought-tolerant high yield wheat varieties.


Assuntos
Secas , Triticum , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mongólia , Melhoramento Vegetal , Estresse Fisiológico/genética , Triticum/genética
10.
Front Plant Sci ; 13: 1086335, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36605968

RESUMO

Benzylisoquinoline alkaloids (BIAs) are a large family of plant natural products with important pharmaceutical applications. Sinomenium acutum is a medicinal plant from the Menispermaceae family and has been used to treat rheumatoid arthritis for hundreds of years. Sinomenium acutum contains more than 50 BIAs, and sinomenine is a representative BIA from this plant. Sinomenine was found to have preventive and curative effects on opioid dependence. Despite the broad applications of S. acutum, investigation on the biosynthetic pathways of BIAs from S. acutum is limited. In this study, we comprehensively analyzed the transcriptome data and BIAs in the root, stem, leaf, and seed of S. acutum. Metabolic analysis showed a noticeable difference in BIA contents in different tissues. Based on the study of the full-length transcriptome, differentially expressed genes, and weighted gene co-expression network, we proposed the biosynthetic pathways for a few BIAs from S. acutum, such as sinomenine, magnoflorine, and tetrahydropalmatine, and screened candidate genes involved in these biosynthesis processes. Notably, the reticuline epimerase (REPI/STORR), which converts (S)-reticuline to (R)-reticuline and plays an essential role in morphine and codeine biosynthesis, was not found in the transcriptome data of S. acutum. Our results shed light on the biogenesis of the BIAs in S. acutum and may pave the way for the future development of this important medicinal plant.

11.
Biotechnol J ; 16(12): e2100250, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34473904

RESUMO

Yangpumicins (YPMs), for example, YPM A, F, and G, are newly discovered enediynes from Micromonospora yangpuensis DSM 45577, which could be exploited as promising payloads of antibody-drug conjugates. However, the low yield of YPMs in the wild-type strain (∼1 mg L-1 ) significantly hampers their further drug development. In this study, a combined ribosome engineering and fermentation optimization strategy has been used for yield improvement of YPMs. One gentamicin-resistant M. yangpuensis DSM 45577 strain (MY-G-1) showed higher YPMs production (7.4 ± 1.0 mg L-1 ), while it exhibits delayed sporulation and slender mycelium under scanning electron microscopy. Whole genome re-sequencing of MY-G-1 reveals several deletion and single nucleotide polymorphism mutations, which were confirmed by PCR and DNA sequencing. Further Box-Behnken experiment and regression analysis determined that the optimal medium concentrations of soluble starch, D-mannitol, and pharmamedia for YPMs production in shaking flasks (10.0 ± 0.8 mg L-1 ). Finally, the total titer of YPM A/F/G in MY-G-1 reached to 15.0 ± 2.5 mg L-1 in 3 L fermenters, which was about 11-fold higher than the original titer of 1.3 ± 0.3 mg L-1 in wild-type strain. Our study may be instrumental to develop YPMs into a clinical anticancer drug, and inspire the use of these multifaceted strategies for yield improvement in Micromonospora species. GRAPHICAL ABSTRACT LAY SUMMARY: ???


Assuntos
Micromonospora , Enedi-Inos , Fermentação , Micromonospora/genética , Ribossomos
12.
PLoS Genet ; 17(4): e1009549, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33930012

RESUMO

Pre-exposure of plants to various abiotic conditions confers improved tolerance to subsequent stress. Mild drought acclimation induces acquired rapid desiccation tolerance (RDT) in the resurrection plant Boea hygrometrica, but the mechanisms underlying the priming and memory processes remain unclear. In this study, we demonstrated that drought acclimation-induced RDT can be maintained for at least four weeks but was completely erased after 18 weeks based on a combination of the phenotypic and physiological parameters. Global transcriptome analysis identified several RDT-specific rapid dehydration-responsive genes related to cytokinin and phospholipid biosynthesis, nitrogen and carbon metabolism, and epidermal morphogenesis, most of which were pre-induced by drought acclimation. Comparison of whole-genome DNA methylation revealed dehydration stress-responsive hypomethylation in the CG, CHG, and CHH contexts and acclimation-induced hypermethylation in the CHH context of the B. hygrometrica genome, consistent with the transcriptional changes in methylation pathway genes. As expected, the global promoter and gene body methylation levels were negatively correlated with gene expression levels in both acclimated and dehydrated plants but showed no association with transcriptional divergence during the procedure. Nevertheless, the promoter methylation variations in the CG and CHG contexts were significantly associated with the differential expression of genes required for fundamental genetic processes of DNA conformation, RNA splicing, translation, and post-translational protein modification during acclimation, growth, and rapid dehydration stress response. It was also associated with the dehydration stress-induced upregulation of memory genes, including pre-mRNA-splicing factor 38A, vacuolar amino acid transporter 1-like, and UDP-sugar pyrophosphorylase, which may contribute directly or indirectly to the improvement of dehydration tolerance in B. hygrometrica plants. Altogether, our findings demonstrate the potential implications of DNA methylation in dehydration stress memory and, therefore, provide a molecular basis for enhanced dehydration tolerance in plants induced by drought acclimation.


Assuntos
Metilação de DNA/genética , Lamiales/genética , Estresse Fisiológico/genética , Transcriptoma/genética , Aclimatação/genética , Aclimatação/fisiologia , Desidratação/genética , Secas , Regulação da Expressão Gênica de Plantas/genética , Lamiales/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética
13.
Environ Sci Pollut Res Int ; 28(4): 4136-4146, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32929675

RESUMO

Arsenic (As) contamination of aquatic and soil environments is a global concern, highlighting the importance of As removal via high-efficiency and low-cost removal technologies. In the present study, novel trimetallic biochar was developed through pyrolyzing corn straw impregnated with inexpensive metal Fe/Al/Zn (hydr)oxides. The results of SEM, FTIR, and XRD verified the formation of metal oxyhydroxides on the surface of the modified biochars, and the modification increased the specific surface area (SSA), total pore volume (TPV), and surface charge of the Fe/Al/Zn (hydr)oxides modified biochar (FAZ-CB). Compared with the original biochar, higher sorption rates and capacities was observed for the FAZ-CB. The maximum As (V) adsorption capacities of FAZ-CB reached 82.9 mg g-1. A pot experiment showed that application of FAZ-CB decreased bioavailable As fractions in the red soil significantly reduced the uptake of As by arugula in edible part and root (42.6 and 56.8%, respectively). The present study demonstrated the superiority of FAZ-CB in the As(V) immobilization in red soil, suggesting that it is a promising candidate for practical application for As immobilization. Therefore, FAZ-CB can be used as a promising functionalized biochar to remediate As contaminated red soil.


Assuntos
Arsênio , Poluentes do Solo , Adsorção , Arsênio/análise , Carvão Vegetal , Solo , Poluentes do Solo/análise , Zinco
14.
Org Lett ; 22(12): 4614-4619, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32463693

RESUMO

Bohemamines (BHMs) are bacterial alkaloids containing a pyrrolizidine core with two unusual methyl groups. Herein we report the activation of BHMs biosynthesis using a ribosome engineering approach. Characterization of the bhm gene cluster reveals that nonribosomal peptide synthetase BhmJ and Baeyer-Villiger monooxygenase BhmK are responsible for the formation of the pyrrolizidine core, which is further methylated on C-7 by methyltransferase BhmG. The 9-methyl group of BHMs is instead originated from a nonproteinogenic amino acid (2S,5S)-5-methylproline.


Assuntos
Família Multigênica/genética , Alcaloides de Pirrolizidina/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Streptomyces/enzimologia
15.
BMC Plant Biol ; 20(1): 59, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019505

RESUMO

BACKGROUND: Basal leaf removal is widely practiced to increase grape cluster sunlight exposure that controls berry rot and improves quality. Studies on its influence on volatile compounds in grape berries have been performed mostly in Mediterranean or marine climate regions. It is uncertain whether similar efficiency can be achieved when grape berries are grown under continental climate. This study aimed to dissect the variation in volatile compound production and transcriptome in sunlight-exposed grape berries in a dry-hot climate region and to propose the key genes related to the variation. RESULTS: Four cluster sunlight exposure strategies, including basal leaf removal at pepper-corn size stage, leaf removal at véraison (LR-V), leaf moving at véraison (LM-V), and half-leaf removal at véraison, were implemented at the north foot of the Mt. Tianshan region of northwestern China. Various cluster exposure treatments resulted in a decline in the concentrations of norisoprenoids and monoterpenes in ripening grape berries. Both ß-carotene and lutein, the substrates of norisoprenoid biosynthesis, were reduced by cluster sunlight exposure. K-means cluster analysis showed that some genes involved in biosynthesis such as VviTPS55, VviTPS60, VviTPS66, VviCCD4a and VviCCD4b exhibited lower expression levels in exposed berries at least at one of the tested stages. Two C6-derived esters with fruity attributes, ethyl hexanoate and hexyl acetate, were reduced markedly. In contrast, main C6 alcohol compound levels were elevated in the LR-V- and LM-V-treated grape berries, which corresponded to the up-regulated expression of VviLOXA, VviLOXO and VviADH1 in the oxylipin pathway. Most of the differentially expressed genes in the exposed and control berries were enriched to the "stress response" processes, and this transcriptome difference was accumulated as the berries matured. Besides, LR-V treatment stimulated a significant up-regulation in photosynthesis-related genes in the grape berries, which did not happen with LM-V treatment. CONCLUSIONS: Cluster sunlight exposure in dry-hot climate viticulture resulted in different volatile-targeted transcriptomic and metabolic responses from those obtained in the temperate Mediterranean or marine climate region. Therefore, a modified canopy management should be adopted to improve the aroma of grape berries.


Assuntos
Regulação da Expressão Gênica de Plantas , Metaboloma , Luz Solar , Transcriptoma , Vitis/genética , Compostos Orgânicos Voláteis/metabolismo , China , Clima , Frutas/genética , Frutas/metabolismo , Vitis/metabolismo
16.
Funct Integr Genomics ; 20(1): 133-149, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31414312

RESUMO

Plants can regenerate new individuals under appropriate culture conditions. Although the molecular basis of shoot regeneration has steadily been unraveled, the role of age-dependent DNA methylation status in the regulation of explant regeneration remains practically unknown. Here, we established an effective auxin/cytokinin-induced shoot regeneration system for the resurrection plant Boea hygrometrica via direct organogenesis and observed that regeneration was postponed with increasing age of donor plants. Global transcriptome analysis revealed significant upregulation of genes required for hormone signaling and phenylpropanoid biosynthesis and downregulation of photosynthetic genes during regeneration. Transcriptional changes in the positive/negative regulators and cell wall-related proteins involved in plant regeneration, such as ELONGATED HYPOCOTYL5 (HY5), LATERAL ORGAN BOUNDARIES DOMAIN, SHOOT-MERISTEMLESS, and WUSCHEL, were associated with the regeneration process. Comparison of DNA methylation profiling between leaves from young seedlings (YL) and mature plants (ML) revealed increased asymmetrical methylation in ML, which was predominantly distributed in promoter regions of genes, such as HY5 and a member of ABA-responsive element (ABRE) binding protein/ABRE binding factor, as well as genes encoding glycine-rich cell wall structural protein, CENTRORADIALIS-like protein, and beta-glucosidase 40-like essential for shoot meristem and cell wall architecture. Their opposite transcription response in ML explants during regeneration compared with those from YL demonstrated the putative involvement of DNA methylation in regeneration. Moreover, a significant lower expression of DNA glycosylase-lyase required for DNA demethylation in ML was coincident with its postponed regeneration compared with those in YL. Taken together, our results suggest a role of promoter demethylation in B. hygrometrica regeneration.


Assuntos
Metilação de DNA , Magnoliopsida/genética , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Genoma de Planta , Magnoliopsida/crescimento & desenvolvimento , Magnoliopsida/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Brotos de Planta/fisiologia , Regeneração/genética , Plântula/genética , Transcriptoma
17.
BMC Plant Biol ; 19(1): 583, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31878879

RESUMO

BACKGROUND: Light conditions significantly influence grape berry ripening and the accumulation of phenolic compounds, but the underlying molecular basis remains partially understood. Here, we applied integrated transcriptomics and pathway-level metabolomics analyses to investigate the effect of cluster bagging during various developmental stages on phenolic metabolism in Cabernet Sauvignon grapes. RESULTS: Bagging treatments had limited effects on berry quality attributes at harvest and did not consistently affect phenolic acid biosynthesis between seasons. Significantly elevated flavan-3-ol and flavonol contents were detected in re-exposed berries after bagging during early-developmental stages, while bagging after véraison markedly inhibited skin anthocyanin accumulation. Several anthocyanin derivatives and flavonol glycosides were identified as marker phenolic metabolites for distinguishing bagged and non-bagged grapes. Coordinated transcriptional changes in the light signaling components CRY2 and HY5/HYHs, transcription regulator MYBA1, and enzymes LAR, ANR, UFGT and FLS4, coincided well with light-responsive biosynthesis of the corresponding flavonoids. The activation of multiple hormone signaling pathways after both light exclusion and re-exposure treatments was inconsistent with the changes in phenolic accumulation, indicating a limited role of plant hormones in mediating light/darkness-regulated phenolic biosynthesis processes. Furthermore, gene-gene and gene-metabolite network analyses discovered that the light-responsive expression of genes encoding bHLH, MYB, WRKY, NAC, and MADS-box transcription factors, and proteins involved in genetic information processing and epigenetic regulation such as nucleosome assembly and histone acetylation, showed a high positive correlation with grape berry phenolic accumulation in response to different light regimes. CONCLUSIONS: Altogether, our findings provide novel insights into the understanding of berry phenolic biosynthesis under light/darkness and practical guidance for improving grape features.


Assuntos
Ácidos Carbocíclicos/metabolismo , Flavonoides/metabolismo , Transcriptoma , Vitis/crescimento & desenvolvimento , Vitis/metabolismo , Agricultura/métodos , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Luz Solar
18.
Plant Cell Physiol ; 60(12): 2707-2719, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31410481

RESUMO

Boea hygrometrica can survive extreme drought conditions and has been used as a model to study desiccation tolerance. A genome-wide transcriptome analysis of B. hygrometrica showed that the plant can survive rapid air-drying after experiencing a slow soil-drying acclimation phase. In addition, a weighted gene co-expression network analysis was used to study the transcriptomic datasets. A network comprising 22 modules was constructed, and seven modules were found to be significantly related to desiccation response using an enrichment analysis. Protein ubiquitination was observed to be a common process linked to hub genes in all the seven modules. Ubiquitin-modified proteins with diversified functions were identified using immunoprecipitation coupled with mass spectrometry. The lowest level of ubiquitination was noted at the full soil drying priming stage, which coincided the accumulation of dehydration-responsive gene BhLEA2. The highly conserved RY motif (CATGCA) was identified from the promoters of ubiquitin-related genes that were downregulated in the desiccated samples. An in silico gene expression analysis showed that the negative regulation of ubiquitin-related genes is potentially mediated via a B3 domain-containing transcription repressor VAL1. This study suggests that priming may involve the transcriptional regulation of several major processes, and the transcriptional regulation of genes in protein ubiquitination may play a hub role to deliver acclimation signals to posttranslational level in the acquisition of desiccation tolerance in B. hygrometrica.


Assuntos
Magnoliopsida/metabolismo , Magnoliopsida/fisiologia , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Magnoliopsida/genética , Proteínas de Plantas/genética , Ubiquitinação/genética , Ubiquitinação/fisiologia
19.
Funct Integr Genomics ; 19(6): 919-932, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31168755

RESUMO

Bread wheat (Triticum aestivum L.) is an allohexaploid, and the transcriptional characteristics of the wheat embryo and endosperm during grain development remain unclear. To analyze the transcriptome, we performed isoform sequencing (Iso-Seq) for wheat grain and RNA sequencing (RNA-Seq) for the embryo and de-embryonated kernels. The differential regulation between the embryo and de-embryonated kernels was found to be greater than the difference between the two time points for each tissue. Exactly 2264 and 4790 tissue-specific genes were found at 14 days post-anthesis (DPA), while 5166 and 3784 genes were found at 25 DPA in the embryo and de-embryonated kernels, respectively. Genes expressed in the embryo were more likely to be related to nucleic acid and enzyme regulation. In de-embryonated kernels, genes were rich in substance metabolism and enzyme activity functions. Moreover, 4351, 4641, 4516, and 4453 genes with the A, B, and D homoeoloci were detected for each of the four tissues. Expression characteristics suggested that the D genome may be the largest contributor to the transcriptome in developing grain. Among these, 48, 66, and 38 silenced genes emerged in the A, B, and D genomes, respectively. Gene ontology analysis showed that silenced genes could be inclined to different functions in different genomes. Our study provided specific gene pools of the embryo and de-embryonated kernels and a homoeolog expression bias model on a large scale. This is helpful for providing new insights into the molecular physiology of wheat.


Assuntos
Transcriptoma , Triticum/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Triticum/crescimento & desenvolvimento
20.
PLoS One ; 14(4): e0215339, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30986222

RESUMO

Titanium dioxide nanoparticles co-modified with CuOx (0≤x≤2) and carbonaceous materials were prepared with a simple hydrolysis and photo-reduction method for photocatalytic hydrogen generation. SEM/TEM and XPS analysis indicated that the carbonaceous materials were mostly coated on the TiO2 surface and clearly revealed that the Cu species exhibited multivalence states, existing as CuOx (0≤x≤2). The optimal catalyst showed a 56-fold enhanced hydrogen evolution rate compared with that of the pure C/TiO2 catalyst. Further, an intensive multiple electron transfer effect originating from CuOx and the carbonaceous materials is proposed to be responsible for the elevated photoactivity. CuOx species serve as electron donors facilitating charge carrier transfer and proton reduction sites. The carbonaceous materials function as the "bridge" that transfers the electrons of TiO2 to the CuOx species, which provides a new route for electron transfer and reinforces the effect of CuOx as a co-catalyst. In this study, the CuOx and C co-modified TiO2 catalyst was prepared with multiple electron transport pathways and enhanced hydrogen production evolution, which provides a deep understanding for the design of co-catalyst-based photocatalysts.


Assuntos
Cobre/química , Hidrogênio/química , Modelos Químicos , Nanopartículas/química , Processos Fotoquímicos , Titânio/química , Catálise , Transporte de Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA