Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 654676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177978

RESUMO

Verticillium wilt, caused by Verticillium dahliae, is one of the most damaging and widespread soil-borne cotton diseases. The molecular mechanisms underlying the cotton defense against V. dahliae remain largely elusive. Here, we compared the transcriptional differences between Upland cotton cultivars: one highly resistant (HR; Shidalukang 1) and one highly susceptible (HS; Junmian 1). This was done at multiple time points after V. dahliae inoculation, which identified 2010 and 1275 differentially expressed genes (DEGs) in HR and HS, respectively. Plant hormone signal transduction-related genes were enriched in HR, whereas genes related to lignin biosynthesis were enriched in both HR and HS. Weighted gene co-expression network analysis (WGCNA) using the 2868 non-redundant genes differentially expressed between the V. dahliae infected and uninfected samples in HR or HS identified 10 different gene network modules and 22 hub genes with a potential role in regulating cotton defense against V. dahliae infection. GhGDH2, encoding glutamate dehydrogenase (GDH), was selected for functional characterization. Suppressing the expression level of GhGDH2 by virus-induced gene silencing (VIGS) in HS led to inhibition of the salicylic acid (SA) biosynthesis/signaling pathways and activation of the jasmonic acid (JA) biosynthesis/signaling pathways, which resulted in an increase of 42.1% JA content and a reduction of 78.9% SA content in cotton roots, and consequently enhanced V. dahliae resistance. Our finding provides new insights on the molecular mechanisms of cotton resistance to V. dahliae infection and candidate genes for breeding V. dahliae resistance cotton cultivars by genetic modification.

2.
Mol Plant Microbe Interact ; 34(3): 240-254, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33507814

RESUMO

Verticillium wilt is a vascular disease causing tremendous damage to cotton production worldwide. However, our knowledge of the mechanisms of cotton resistance or susceptibility to this disease is very limited. In this study, we compared the defense transcriptomes of cotton (Gossypium hirsutum) cultivars Shidalukang 1 (Verticillium dahliae resistant, HR) and Junmian 1 (V. dahliae susceptible, HS) before and after V. dahliae infection, identified hub genes of the network associated with responses to V. dahliae infection, and functionally characterized one of the hub genes involved in biosynthesis of lignin and phenolics. We identified 6,831 differentially expressed genes (DEGs) between the basal transcriptomes of HR and HS; 3,685 and 3,239 of these DEGs were induced in HR and HS, respectively, at different time points after V. dahliae infection. KEGG pathway analysis indicated that DEGs were enriched for genes involved in lignin biosynthesis. In all, 23 hub genes were identified based on a weighted gene coexpression network analysis of the 6,831 DEGs and their expression profiles at different time points after V. dahliae infection. Knockdown of Gh4CL30, one of the hub genes related to the lignin biosynthesis pathway, by virus-induced gene silencing, led to a decreased content of flavonoids, lignin, and S monomer but an increased content of G monomer, G/S lignin monomer, caffeic acid, and ferulic acid, and enhanced cotton resistance to V. dahliae. These results suggest that Gh4CL30 is a key gene modulating the outputs of different branches of the lignin biosynthesis pathway, and provide new insights into cotton resistance to V. dahliae.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Resistência à Doença , Gossypium , Lignina , Fenóis , Proteínas de Plantas , Verticillium , Ascomicetos/fisiologia , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Gossypium/química , Gossypium/genética , Gossypium/metabolismo , Gossypium/microbiologia , Lignina/genética , Fenóis/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Verticillium/metabolismo
5.
Biomed Pharmacother ; 127: 110119, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32276127

RESUMO

Idiopathic pulmonary fibrosis (IPF), characterized by excessive collagen deposition, is a progressive and typically fatal lung disease without effective therapeutic strategies. Juglanin, as a natural product mainly isolated from green walnut husks of Juglans mandshuric, has various bioactivities, including anti-oxidative, anti-inflammatory and anti-fibrotic effects. Stimulator of interferon genes (Sting) is a signaling molecule and plays an essential role in meditating fibrosis. However, the effects of Jug and Sting on pulmonary fibrosis are not fully understood. In this study, we investigated the role of Jug in bleomycin (BLM)-induced inflammation and fibrosis mouse model, as well as the underlying molecular mechanism. The results here indicated that Jug-treated mice exhibited a definitively improved survival rate than that of the BLM-challenged mice. Jug administration significantly alleviated neutrophil alveolar infiltration, lung vascular permeability and pro-inflammatory response in BLM mice. Subsequently, the pulmonary fibrosis induced by BLM was markedly attenuated by Jug through reducing the expression of fibrotic hallmarks, including transforming growth factor-ß1 (TGF-ß1), fibronectin, matrix metallo-proteinase-9 (MMP-9), α-smooth muscle actin (α-SMA) and collagen I. Importantly, we found that BLM mice showed higher expression levels of Sting in lung tissues, which were notably restrained by Jug treatment. The role of Jug in suppressing Sting was confirmed in TGF-ß-incubated cells. Notably, the in vitro analysis further showed that Sting knockdown could ameliorate TGF-ß-triggered collagen accumulation. In contrast, TGF-ß-induced fibrosis was accelerated by Sting over-expression. Therefore, BLM may induce lung fibrosis through activating Sting signaling, and Jug could be used therapeutically to improve tissue repair and attenuate the intractable disease.


Assuntos
Glicosídeos/farmacologia , Inflamação/prevenção & controle , Quempferóis/farmacologia , Proteínas de Membrana/metabolismo , Fibrose Pulmonar/prevenção & controle , Actinas/biossíntese , Animais , Bleomicina , Colágeno Tipo I/biossíntese , Fibronectinas/biossíntese , Técnicas de Silenciamento de Genes , Inflamação/complicações , Masculino , Metaloproteinase 9 da Matriz/biossíntese , Proteínas de Membrana/genética , Camundongos , Fibrose Pulmonar/induzido quimicamente , Transdução de Sinais/efeitos dos fármacos , Taxa de Sobrevida , Fator de Crescimento Transformador beta1/biossíntese
6.
BMC Plant Biol ; 20(1): 125, 2020 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-32293290

RESUMO

BACKGROUND: The function of 4-coumarate-CoA ligases (4CL) under abiotic stresses has been studied in plants, however, limited is known about the 4CL genes in cotton (G. hirsutum L.) and their roles in response to drought stress. RESULTS: We performed genome-wide identification of the 4CL genes in G. hirsutum and investigated the expression profiles of the identified genes in various cotton tissues and in response to stress conditions with an aim to identify 4CL gene(s) associated with drought tolerance. We identified 34 putative 4CL genes in G. hirsutum that were clustered into three classes. Genes of the same class usually share a similar gene structure and motif composition. Many cis-elements related to stress and phytohormone responses were found in the promoters of the Gh4CL genes. Of the 34 Gh4CL genes, 26 were induced by at least one abiotic stress and 10 (including Gh4CL7) were up-regulated under the polyethylene glycol (PEG) simulated drought stress conditions. Virus-induced gene silencing (VIGS) in cotton and overexpression (OE) in Arabidopsis thaliana were applied to investigate the biological function of Gh4CL7 in drought tolerance. The Gh4CL7-silencing cotton plants showed more sensitive to drought stress, probably due to decreased relative water content (RWC), chlorophyll content and antioxidative enzyme activity, increased stomatal aperture, and the contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2). Arabidopsis lines overexpressing Gh4CL7, however, were more tolerant to drought treatment, which was associated with improved antioxidative enzyme activity, reduced accumulation of MDA and H2O2 and up-regulated stress-related genes under the drought stress conditions. In addition, compared to their respective controls, the Gh4CL7-silencing cotton plants and the Gh4CL7-overexpressing Arabidopsis lines had a ~ 20% reduction and a ~ 10% increase in lignin content, respectively. The expression levels of genes related to lignin biosynthesis, including PAL, CCoAOMT, COMT, CCR and CAD, were lower in Gh4CL7-silencing plants than in controls. Taken together, these results demonstrated that Gh4CL7 could positively respond to drought stress and therefore might be a candidate gene for improvement of drought tolerance in cotton. CONCLUSION: We characterized the 4CL gene family in upland cotton and revealed a role of Gh4CL7 in lignin biosynthesis and drought tolerance.


Assuntos
Coenzima A Ligases/genética , Secas , Gossypium/fisiologia , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/fisiologia , Coenzima A Ligases/metabolismo , Gossypium/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética
7.
Front Plant Sci ; 11: 69, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32158454

RESUMO

Verticillium wilt caused by Verticillium dahliae is a destructive cotton disease causing severe yield and quality losses worldwide. WRKY transcription factors play important roles in plant defense against pathogen infection. However, little has been reported on the functions of WRKYs in cotton's resistance to V. dahliae. Here, we identified 5, 5, and 10 WRKY70 genes in Gossypium arboreum, Gossypium raimondii, and Gossypium hirsutum, respectively, and investigated the expression profiles of all GhWRKY70 genes in various cotton tissues and in response to hormone treatment or V. dahliae infection. Reverse transcription-quantitative PCR analysis showed that GhWRKY70D13 was expressed higher in roots and stems than in other tissues, and up-regulated after V. dahliae inoculation. Knock-down of GhWRKY70D13 improved resistance to V. dahliae in both resistant and susceptible cotton cultivars. Comparative analysis of transcriptomes generated from wild-type and stable RNAi (RNA interference) plant with down-regulated GhWRKY70D13 showed that genes involved in ethylene (ET) and jasmonic acid (JA) biosynthesis and signaling were significantly upregulated in the GhWRKY70D13 RNAi plants. Consistently, the contents of 1-aminocyclopropane-1-carboxylic (ACC), JA, and JA-isoleucine levels were significantly higher in the GhWRKY70D13 RNAi plants than in wild-type. Following V. dahliae infection, the levels of ACC and JA decreased in the GhWRKY70D13 RNAi plants but still significantly higher (for ACC) than that in wild-type or at the same level (for JA) as in non-infected wild-type plants. Collectively, our results suggested that GhWRKY70D13 negatively regulates cotton's resistance to V. dahliae mainly through its effect on ET and JA biosynthesis and signaling pathways.

8.
Biol Psychiatry ; 82(11): 781-793, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28648649

RESUMO

BACKGROUND: Nicotine craving and relapse often occurs after reactivation of nicotine reward memories. We recently developed a memory retrieval-reconsolidation interference procedure in which reactivating nicotine reward memories by acute exposure to nicotine (the unconditioned stimulus [UCS]) and then pharmacologically interfering with memory reconsolidation decreased relapse to nicotine seeking in rats and nicotine craving in smokers. Here, we investigated underlying mechanisms. METHODS: In the first series of experiments, we trained rats for nicotine-induced conditioned place preference (CPP) or nicotine self-administration and ventricularly microinjected them with the protein synthesis inhibitor anisomycin immediately after UCS-induced memory retrieval. In the second series of experiments, we used tyramide-amplified immunohistochemistry-fluorescence in situ hybridization to examine neural ensembles in the basolateral amygdala (BLA) reactivated by nicotine conditioned stimulus- or UCS-induced memory retrieval. We then used the Daun02 chemogenetic inactivation procedure to selectively inhibit the nicotine UCS-reactivated BLA neuronal ensembles. RESULTS: Ventricular injections of the anisomycin immediately after nicotine UCS memory retrieval inhibited subsequent nicotine CPP and relapse to operant nicotine seeking after short or prolonged abstinence. More important, within BLA, distinct neuronal ensembles encoded pavlovian CPP and operant self-administration reward memories and nicotine (the UCS) injections in the home cage reactivated both neuronal ensembles. Daun02 chemogenetic inactivation of the nicotine-reactivated ensembles inhibited both nicotine CPP and relapse to nicotine seeking. CONCLUSIONS: Results demonstrate that the nicotine UCS-induced memory retrieval manipulation reactivates multiple nicotine reward memories that are encoded by distinct BLA neuronal ensembles that play a role in nicotine preference and relapse.


Assuntos
Tonsila do Cerebelo/citologia , Condicionamento Operante/fisiologia , Memória/efeitos dos fármacos , Neurônios/fisiologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Animais , Condicionamento Clássico/efeitos dos fármacos , Condicionamento Operante/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Proteínas Oncogênicas v-fos/genética , Proteínas Oncogênicas v-fos/metabolismo , Fosfopiruvato Hidratase/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Recompensa , Autoadministração
9.
J Neurosci ; 34(19): 6647-58, 2014 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-24806690

RESUMO

Extinction therapy has been suggested to suppress the conditioned motivational effect of drug cues to prevent relapse. However, extinction forms a new inhibiting memory rather than erasing the original memory trace and drug memories invariably return. Perineuronal nets (PNNs) are a specialized extracellular matrix around interneurons in the brain that have been suggested to be a permissive factor that allows synaptic plasticity in the adolescent brain. The degradation of PNNs caused by chondroitinase ABC (ChABC) may generate induced juvenile-like plasticity (iPlasticity) and promote experience-dependent plasticity in the adult brain. In the present study, we investigated the effect of removing PNNs in the amygdala of rat on the extinction of drug memories. We found that extinction combined with intra-amygdala injections of ChABC (0.01 U/side) prevented the subsequent priming-induced reinstatement of morphine-induced and cocaine-induced, but not food -induced, conditioned place preference (CPP). Intra-amygdala injections of ChABC alone had no effect on the retention, retrieval, or relearning of morphine-induced CPP and storage of acquired food-induced CPP. Moreover, we found that the procedure facilitated the extinction of heroin- and cocaine-seeking behavior and prevented the spontaneous recovery and drug-induced reinstatement of heroin- and cocaine-seeking behavior. We also found that the effect of PNNs degradation combined with extinction may be mediated by the potentiation of several plasticity-related proteins in the amygdala. Altogether, our findings demonstrate that a combination of extinction training with PNNs degradation in the amygdala erases drug memories and suggest that ChABC may be an attractive candidate for the prevention of relapse.


Assuntos
Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Memória , Rede Nervosa/fisiologia , Transtornos Relacionados ao Uso de Substâncias/psicologia , Animais , Western Blotting , Condroitina ABC Liase/administração & dosagem , Condroitina ABC Liase/farmacologia , Transtornos Relacionados ao Uso de Cocaína/psicologia , Condicionamento Operante , Extinção Psicológica , Alimentos , Dependência de Heroína/psicologia , Masculino , Microinjeções , Dependência de Morfina/psicologia , Plasticidade Neuronal/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reforço Psicológico , Prevenção Secundária
10.
Psychopharmacology (Berl) ; 231(15): 2909-19, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24553575

RESUMO

RATIONALE AND OBJECTIVES: A conditioned stimulus (CS) is associated with a fearful unconditioned stimulus (US) in the traditional fear conditioning model. After fear conditioning, the CS-US association memory undergoes the consolidation process to become stable. Consolidated memory enters an unstable state after retrieval and requires the reconsolidation process to stabilize again. Evidence indicates the important role of Rac (Ras-related C3 botulinum toxin substrate) in the acquisition and extinction of fear memory. In the present study, we hypothesized that Rac in the amygdala is crucial for the reconsolidation of auditory and contextual Pavlovian fear memory. METHODS: Auditory and contextual fear conditioning and microinjections of the Rac inhibitor NSC23766 were used to explore the role of Rac in the reconsolidation of auditory and contextual Pavlovian fear memory in rats. RESULTS: A microinjection of NSC23766 into the basolateral amygdala (BLA) but not central amygdala (CeA) or cornu ammonis 1 (CA1) immediately after memory retrieval disrupted the reconsolidation of auditory Pavlovian fear memory. A microinjection of NSC23766 into the CA1 but not BLA or CeA after memory retrieval disrupted the reconsolidation of contextual Pavlovian fear memory. CONCLUSIONS: Our experiments demonstrate that Rac in the BLA is crucial for the reconsolidation of auditory Pavlovian fear memory, whereas Rac in the CA1 is critical for the reconsolidation of contextual Pavlovian fear memory.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Região CA1 Hipocampal/fisiologia , Condicionamento Clássico/fisiologia , Medo/fisiologia , Memória/fisiologia , Proteínas rac1 de Ligação ao GTP/metabolismo , Aminoquinolinas/farmacologia , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/fisiologia , Animais , Percepção Auditiva/efeitos dos fármacos , Percepção Auditiva/fisiologia , Complexo Nuclear Basolateral da Amígdala/efeitos dos fármacos , Região CA1 Hipocampal/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Extinção Psicológica/efeitos dos fármacos , Extinção Psicológica/fisiologia , Medo/efeitos dos fármacos , Reação de Congelamento Cataléptica , Memória/efeitos dos fármacos , Pirimidinas/farmacologia , Ratos Sprague-Dawley , Proteínas rac1 de Ligação ao GTP/antagonistas & inibidores
11.
Clin Exp Pharmacol Physiol ; 37(8): 852-61, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20456426

RESUMO

1. The hyperpolarization-induced, cation-selective current I(h) is widely observed in peripheral sensory neurons of the vagal and dorsal root ganglia, but the peak magnitude and voltage- and time-dependent properties of this current vary widely across afferent fibre type. 2. Using patch clamp investigations of rat isolated vagal ganglion neurons (VGN) identified as myelinated A-type afferents, we established a compendium of functional correlates between changes in membrane potential and the dynamic discharge properties of these sensory neurons as a result of the controlled recruitment of I(h) using the current clamp technique. 3. Two robust responses were observed in response to hyperpolarizing step currents: (i) upon initiation of the negative step current, there was a rapid hyperpolarization of membrane potential followed by a depolarizing voltage sag (DVS) towards a plateau in membrane potential as a result of steady state recruitment of I(h); and (ii) upon termination of the negative step current, there was a rapid return to the pretest resting membrane potential that often led to spontaneous action potential discharge. These data were strongly correlated (r(2) > 0.9) with a broad compendium of dynamic discharge characteristics in these A-type VGN. 4. In response to depolarizing step currents of increasing magnitude, the discharge frequency of the A-type VGN responded with increases in the rate of sustained repetitive discharge. Upon termination of the depolarizing step current, there was a post-excitatory membrane hyperpolarization of a magnitude that was strongly correlated with action potential discharge rate (r(2) > 0.9). 5. Application of the selective hyperpolarization-activated cyclic nucleotide gated (HCN) channel blockers ZD7288 (10 micromol/L) or CsCl (1.0 mmol/L) abolished I(h) and all of the aforementioned functional correlates. In addition to reducing the excitability of the A-type VGN to step depolarizing currents. 6. Because there is increasing evidence that the HCN channel current may represent a valid target for pharmacological intervention, the quantitative relationships described in the present study could potentially help guide the molecular and/or chemical modification of HCN channel gating properties to effect a particular outcome in VGN discharge properties, ideally well beyond merely selective blockade of a particular HCN channel subtype.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/efeitos dos fármacos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Fibras Nervosas Mielinizadas/fisiologia , Neurônios Aferentes/fisiologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/metabolismo , Nervo Vago/fisiologia , Potenciais de Ação/fisiologia , Animais , Separação Celular , Células Cultivadas , Césio/farmacologia , Cloretos/farmacologia , Eletrofisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico/efeitos dos fármacos , Masculino , Potenciais da Membrana/fisiologia , Fibras Nervosas Amielínicas/fisiologia , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA