Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 276(Pt 1): 133760, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39013510

RESUMO

The concentration of urea in sweat serves as a valuable indicator of an individual's overall health. In this study, we present a novel hydrogel sensor (BAF-CPu), based on cellulose nanofiber and polyvinyl alcohol, designed to achieve non-invasive in situ and highly sensitive detection of urea in sweat by combining the dual-mode response of colorimetric and ratiometric fluorescence techniques. The bright red fluorescent gold­copper bimetallic nanoclusters and green fluorescent fluorescein isothiocyanate-modified cellulose nanofibers endowed BAF-CPu with proportional fluorescence responsive properties. Under the catalytic action of urease, the hydrolysis of urea raises the pH, resulting in diminished red fluorescence along with enhanced green fluorescence, and the fluorescence color of BAF-CPu changes from red to green. Moreover, BAF-CPu hydrogel encapsulates pH-responsive bromothymol blue (BTB), which changes from yellow to blue in the presence of urea. Importantly, BAF-CPu absorbs sweat by adhering directly to the skin surface, avoiding the complicated sampling process and improving the maneuverability of the detection process. With both ratiometric fluorescence and colorimetric modes, BAF-CPu is not only able to detect sweat in situ, but also can reduce the interference of the complex sweat environment on the urea detection, and realize the high sensitivity detection of urea in sweat.

2.
Int J Biol Macromol ; 272(Pt 1): 132745, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38823734

RESUMO

Transdermal drug delivery (TDD) has shown great promise in superficial tumor therapy due to its noninvasive and avoidance of the first-pass effect. Especially, passive penetration enhancement technique (PPET) provides the technical basis for TDD by temporarily altering the skin surface structure without requiring external energy. Biomacromolecules and their derived nanocarriers offer a wide range of options for PPET development, with outstanding biocompatibility and biodegradability. Furthermore, the abundant functional groups on biomacromolecule surfaces can be modified to yield functional materials capable of targeting specific sites and responding to stimuli. This enables precise drug delivery to the tumor site and controlled drug release, with the potential to replace traditional drug delivery methods and make PPET-related personalized medicine a reality. This review focuses on the mechanism of biomacromolecules and nanocarriers with skin, and the impact of nanocarriers' surface properties of nanocarriers on PPET efficiency. The applications of biomacromolecule-based PPET in superficial tumor therapy are also summarized. In addition, the advantages and limitations are discussed, and their future trends are projected based on the existing work of biomacromolecule-based PPET.


Assuntos
Portadores de Fármacos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Portadores de Fármacos/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Antineoplásicos/química , Antineoplásicos/administração & dosagem , Administração Cutânea , Pele/metabolismo , Nanopartículas/química , Absorção Cutânea , Substâncias Macromoleculares/química
3.
Biosens Bioelectron ; 259: 116384, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768536

RESUMO

A novel ratiometric Molecularly Imprinted Electrochemical sensor for the specific marker of Glycyrrhiza glabra L. was developed in this work. To achieve simultaneous detection of two analytes on one sensor, we constructed a double template molecular imprinted electrochemical sensor with glabridin (GLA) and isoliquiritin (ISL) as templates. Further, Ferrocene/ZIF-8 (Fc/ZIF-8) composites were prepared via a one-pot solvothermal reaction and coated on the surface of a glassy carbon electrode (GCE), and the oxidation of Fc was presented as the internal reference signal. Nitrogen-doped carbon (NOC) with high conductivity was further loaded on the modified GCE. Based on theoretical exploration and computer directional simulation of density functional theory (DFT), the optimal functional monomer and the best ratio of double template molecules to functional monomer were screened. Under optimal conditions, the sensor produced electrochemical curves when exposed to a solution containing GLA and ISL. As the concentration of GLA and ISL increased, the peak current intensity of GLA and ISL (IGLA and IISL) also increased, while the peak current intensity of Fc (as a reference signal) remained relatively constant. The values of IGLA/IFc and IISL/IFc showed excellent linear relationships with GLA and ISL concentrations in the range of 0.1-160 µM and 0.5-150 µM, respectively. The detection limits were 0.052 µM and 0.27 µM (S/N = 3), respectively. Due to the imprinting effect of MIP and the existence of a reference signal, the sensor exhibited excellent selectivity and anti-interference ability and was successfully applied to the quality evaluation of Glycyrrhiza glabra L.


Assuntos
Técnicas Biossensoriais , Carbono , Técnicas Eletroquímicas , Impressão Molecular , Nitrogênio , Técnicas Biossensoriais/métodos , Carbono/química , Técnicas Eletroquímicas/métodos , Nitrogênio/química , Impressão Molecular/métodos , Limite de Detecção , Condutividade Elétrica , Glycyrrhiza/química , Eletrodos
4.
J Colloid Interface Sci ; 664: 263-274, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38471189

RESUMO

In recent years, ternary layered double hydroxide (LDH) has become a research hotspot for electrode materials and oxygen evolution reaction (OER) catalyst due to the enhanced synergistic effect between individual elements. However, the application of LDH is greatly limited by its low electrical conductivity and the disadvantage that nanosheets tend to accumulate and mask the active sites. Herein, a novel Ru-doped CoNiFe - LDH was prepared via a facile hydrothermal method. According to the density functional theory (DFT) calculations, the doping of Ru element could improve electron state density and band gaps of LDH and consequently boosted the electrochemical reaction kinetics as well as electrical conductivity. Furthermore, introduction of Ru atom induced the formation of porous flower-like structures in nanosheets. Compared to CoNiFe - LDH (28.9 m2/g), Ru-doped CoNiFe - LDH performed larger specific surface area of 53.1 m2/g, resulting in more electrochemically active sites. In these case, Ru-doped CoNiFe - LDH demonstrated better energy storage performance of 176.0 mAh/g at 1 A/g compared to original CoNiFe - LDH (78.9 mAh/g at 1 A/g). Besides, the assembled Ru-doped CoNiFe - LDH//activated carbon (AC) device delivered a maximum energy density of 36.4 W h kg-1 at the power density of 740.3 W kg-1 and an outstanding cycle life (78.7 % after 10,000 cycles). Meanwhile, Ru-doped CoNiFe - LDH exhibited lower overpotential (339 mV at 50 mA cm-2) and Tafel slope (93.2 mV dec-1). Therefore, this work provided novel and valuable insights into the rational doping of Ru elements for the controlled synthesis of supercapacitor electrode materials and OER catalysts.

5.
Chem Commun (Camb) ; 60(28): 3810-3813, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38488056

RESUMO

A novel probe C1 combining benzothiazole with a spiropyran section was developed for the specific detection of human serum albumin (HSA). The molecular docking suggested that the sulphonic acid group modification allowed C1 to form specific hydrogen bonds with lysine (Lys137) at fatty acid site 1 (FA1) of HSA, thus enabling fluorescence differentiation between HSA and BSA.


Assuntos
Soroalbumina Bovina , Albumina Sérica Humana , Humanos , Albumina Sérica Humana/química , Soroalbumina Bovina/química , Corantes Fluorescentes/química , Simulação de Acoplamento Molecular , Ácidos Graxos , Espectrometria de Fluorescência , Ligação Proteica
6.
J Therm Biol ; 120: 103823, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38442663

RESUMO

OBJECTIVES: Although cold stress-induced damage to the heart and thyroid has been reported, specific organ associations between the heart and thyroid with delayed injury mechanisms have not been investigated. In this study, we determined the damage time and transcript levels of a large number of genes in the heart and thyroid after cold exposure. Meanwhile, we analysed the relationship between heart and thyroid injury in human medical records to determine the association of delayed injury from cold exposure. METHODS: Mice were exposed to cold stress and hysteresis injury. Gene changes at the transcriptional level were detected using high throughput sequencing technology. The most variable genes were verified at the protein level using Western Blotting and medical records were collected and analysed. RESULTS: The damage was the most severe when the animals were allowed to recover to room temperature for 4 h after exposure to cold stress. During this process, STAT1 and ATF3 genes were acutely up-regulated. Analysis of human medical records showed the highest correlation between AST and T4 under cold stress (p = 0.0011). CONCLUSIONS: Exposure to cold increases blood level of free thyroid hormone and biomarkers of myocardial injury, as well as related mRNA levels. These changes were more pronounced after return to room temperature.


Assuntos
Glândula Tireoide , Hormônios Tireóideos , Camundongos , Animais , Humanos , Temperatura Baixa , Resposta ao Choque Frio
7.
Int J Biol Macromol ; 264(Pt 2): 130785, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471605

RESUMO

Chemotherapy remains one of the most widely used cancer treatment modalities in clinical practice. However, the characteristic microenvironment of solid tumors severely limits the anticancer efficacy of chemotherapy. In addition, a single treatment modality or one death pathway reduces the antitumor outcome. Herein, tumor-targeting O2 self-supplied nanomodules (CuS@DOX/CaO2-HA) are proposed that not only alleviate tumor microenvironmental hypoxia to promote the accumulation of chemotherapeutic drugs in tumors but also exert photothermal effects to boost drug release, penetration and combination therapy. CuS@DOX/CaO2-HA consists of copper sulfide (CuS)-loaded calcium peroxide (CaO2) and doxorubicin (DOX), and its surface is further modified with HA. CuS@DOX/CaO2-HA underwent photothermal treatment to release DOX and CaO2. Hyperthermia accelerates drug penetration to enhance chemotherapeutic efficacy. The exposed CaO2 reacts with water to produce Ca2+, H2O2 and O2, which sensitizes cells to chemotherapy through mitochondrial damage caused by calcium overload and a reduction in drug efflux via the alleviation of hypoxia. Moreover, under near infrared (NIR) irradiation, CuS@DOX/CaO2-HA initiates a pyroptosis-like cell death process in addition to apoptosis. In vivo, CuS@DOX/CaO2-HA demonstrated high-performance antitumor effects. This study provides a new strategy for synergistic enhancement of chemotherapy in hypoxic tumor therapy via combination therapy and multiple death pathways.


Assuntos
Nanopartículas , Neoplasias , Humanos , Ácido Hialurônico/uso terapêutico , Peróxido de Hidrogênio , Doxorrubicina , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fototerapia , Hipóxia , Linhagem Celular Tumoral , Microambiente Tumoral
8.
Exp Cell Res ; 435(2): 113933, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38296018

RESUMO

Natural killer (NK) cells are triggered by the innate immune response in the tumor microenvironment. The extensive set of stimulating and inhibiting receptors mediates the target recognition of NK cells, and controls the strength of the effector reaction countering specific targeted cells. Yet, lacking major MHC (histocompatibility complex) MICA/B class I chain-related proteins on the membrane of tumor cells results in the failure of NK cell recognition and ability to resist NK cell destruction. Searching databases and molecular docking suggested that in cervical cancer, pterostilbene (3,5-dimethoxy-40-hydroxystilbene; PTS) in Vaccinium corymbosum extract could constrain PI3K/AKT signaling and improving the MICA/B expression. In flow cytometry, MTT assay, viability/cytotoxicity assay, and colony development assays, PTS reduced the development of cervical cancer cells and increased apoptosis. The quantitative real-time PCR (qRT-PCR) and a Western blot indicate that PTS controlled the cytolytic action of NK cells in tumor cells via increasing the MICA/B expression, thus modifying the anti-tumor immune response in cervical cancer.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Neoplasias do Colo do Útero , Feminino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Antígenos de Histocompatibilidade Classe I/genética , Células Matadoras Naturais , Transdução de Sinais , Citotoxicidade Imunológica , Microambiente Tumoral
9.
ACS Appl Mater Interfaces ; 16(6): 6998-7013, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38294419

RESUMO

The rational design and construction of composite electrodes are crucial for overcoming the issues of poor working stability and slow ionic electron mobility of a single component. Nevertheless, it is a big challenge to construct core-shell heterostructures with crystalline/amorphous/crystalline heterointerfaces in straightforward and efficient methods. Here, we have successfully converted a portion of crystalline CoGa2O4 into the amorphous phase by employing a facile sulfidation process (denoted as CoGa2O4-S), followed by anchoring crystalline NiCo-layered double hydroxide (denoted as NiCo-LDH) nanoarrays onto hexagonal plates and nucleation points of CoGa2O4-S, synthesizing dual-type hexagonal and flower-like 3D CoGa2O4-S@NiCo-LDH core-shell heterostructures with crystalline/amorphous/crystalline heterointerfaces on carbon cloth. Furthermore, we further adjust the Ni/Co ratio in LDH, achieving precise and controllable core-shell heterostructures. Benefiting from the abundant crystalline/amorphous/crystalline heterointerfaces and synergistic effect among various components, the CoGa2O4-S@Ni2Co1-LDH electrode exhibits a specific capacity of 247.8 mAh·g-1 at 1 A·g-1 and good rate performance. A CoGa2O4-S@Ni2Co1-LDH//AC flexible asymmetric supercapacitor provides an energy density of 58.2 Wh·kg-1 at a power density of 850 W·kg-1 and exhibits an impressive capacitance retention of 105.7% after 10,000 cycles at 10 A·g-1. Our research provides profound insights into the design of other similar core-shell heterostructures.

10.
J Mater Chem B ; 11(46): 11044-11051, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-37904545

RESUMO

The effectiveness of chemodynamic therapy (CDT) in cancer treatment is limited by insufficient endogenous H2O2 levels in tumor tissue and an increasing ratio of high valence metal ions. To overcome these challenges, a novel nanotherapeutic approach, named GOx-CuCaP-DSF, has been proposed. This approach involves the design of nanotherapeutics that aim to self-supply H2O2 within cancer cells and provide a supplement of low valence metal ions to enhance the performance of CDT. GOx-CuCaP-DSF nanotherapeutics are engineered by incorporating glucose oxidase (GOx) into Ca2+-doped calcium phosphate (CaP) nanoparticles and loading disulfiram (DSF) through surface adsorption. Under the tumor microenvironment, GOx catalyzes the conversion of tumor-overexpressed glucose (Glu) to liberate H2O2. The degradation of CaP further lowers the pH, facilitating the release of Cu2+ ions and DSF. The rapid reaction between Cu2+ and DSF leads to the generation of Cu+, increasing the Cu+/Cu2+ ratio and promoting the Cu+-based Fenton reaction, which enhances the efficiency of CDT. Simultaneously, DSF undergoes conversion to diethyldithiocarbamate acid (ET), forming a copper(II) complex (Cu(II)ET) by strong chelation with Cu ions. This Cu(II)ET complex, a potent chemotherapeutic drug, exhibits a synergistic therapeutic effect in combination with CDT. Moreover, the elevated Cu+ species resulting from DSF reaction promotes the aggregation of toxic mitochondrial proteins, leading to cell cuproptosis. Overall, the strategy of integrating the chemodynamic therapy efficiency of the Fenton reaction with the activation of efficacious cuproptosis using a chemotherapeutic drug presents a promising avenue for enhancing the effectiveness of multi-modal anti-tumor treatments.


Assuntos
Cobre , Neoplasias , Humanos , Cobre/farmacologia , Peróxido de Hidrogênio , Neoplasias/tratamento farmacológico , Adsorção , Glucose Oxidase , Microambiente Tumoral
11.
Nanomaterials (Basel) ; 13(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37630922

RESUMO

In nanotechnology, the synthesis of carbon quantum dots (CQDs) by mixed doping with metals and non-metals has emerged as an appealing path of investigation. This review offers comprehensive insights into the synthesis, properties, and emerging applications of mixed-doped CQDs, underlining their potential for revolutionary advancements in chemical sensing, biosensing, bioimaging, and, thereby, contributing to advancements in diagnostics, therapeutics, and the under standing of complex biological processes. This synergistic combination enhances their sensitivity and selectivity towards specific chemical analytes. The resulting CQDs exhibit remarkable fluorescence properties that can be involved in precise chemical sensing applications. These metal-modified CQDs show their ability in the selective and sensitive detection from Hg to Fe and Mn ions. By influencing their exceptional fluorescence properties, they enable precise detection and monitoring of biomolecules, such as uric acid, cholesterol, and many antibiotics. Moreover, when it comes to bioimaging, these doped CQDs show unique behavior towards detecting cell lines. Their ability to emit light across a wide spectrum enables high-resolution imaging with minimal background noise. We uncover their potential in visualizing different cancer cell lines, offering valuable insights into cancer research and diagnostics. In conclusion, the synthesis of mixed-doped CQDs opens the way for revolutionary advancements in chemical sensing, biosensing, and bioimaging. As we investigate deeper into this field, we unlock new possibilities for diagnostics, therapeutics, and understanding complex biological processes.

12.
Mol Pharm ; 20(9): 4574-4586, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37307591

RESUMO

SLC16A1 and SLC16A3 (SLC16A1/3) are highly expressed in cervical cancers and associated with the malignant biological behavior of cancer. SLC16A1/3 is the critical hub for regulating the internal and external environment, glycolysis, and redox homeostasis in cervical cancer cells. Inhibiting SLC16A1/3 provides a new thought to eliminate cervical cancer effectively. There are few reports on effective treatment strategies to eliminate cervical cancer by simultaneously targeting SLC16A1/3. GEO database analysis and quantitative reverse transcription polymerase chain reaction experiment were used to confirm the high expression of SLC16A1/3. The potential inhibitor of SLC16A1/3 was screened from Siwu Decoction by using network pharmacology and molecular docking technology. The mRNA levels and protein levels of SLC16A1/3 in SiHa and HeLa cells treated by Embelin (EMB) were clarified, respectively. Furthermore, the Gallic acid-iron (GA-Fe) drug delivery system was used to improve its anti-cancer performance. Compared with normal cervical cells, SLC16A1/3 mRNA was over-expressed in SiHa and HeLa cells. Through the analysis of Siwu Decoction, a simultaneously targeted SLC16A1/3 inhibitor EMB was discovered. It was found for the first time that EMB promoted lactic acid accumulation and further induced redox dyshomeostasis and glycolysis disorder by simultaneously inhibiting SLC16A1/3. The gallic acid-iron-Embelin (GA-Fe@EMB) drug delivery system delivered EMB, which had a synergistic anti-cervical cancer effect. Under the irradiation of a near-infrared laser, the GA-Fe@EMB could elevate the temperature of the tumor area effectively. Subsequently, EMB was released and mediated the lactic acid accumulation and the GA-Fe nanoparticle synergistic Fenton reaction to promote ROS accumulation, thereby increasing the lethality of the nanoparticles on cervical cancer cells. GA-Fe@EMB can target cervical cancer marker SLC16A1/3 to regulate glycolysis and redox pathways, synergistically with photothermal therapy, which provides a new avenue for the synergistic treatment of malignant cervical cancer.


Assuntos
Nanopartículas , Neoplasias do Colo do Útero , Feminino , Humanos , Células HeLa , Ferro , Ácido Gálico , Simulação de Acoplamento Molecular , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética , Oxirredução , Glicólise
13.
Int J Biol Macromol ; 244: 125408, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37343606

RESUMO

Crataegus pinnatifida is a plant of the Crataegus genus in the Rosaceae family and is commonly used as a food and medicinal resource. Crataegus pinnatifida polysaccharide, as one of the main active ingredients of Crataegus pinnatifida, has a variety of beneficial biological activities, such as antioxidant, hypoglycemic activity, lipid-lowering, intestinal flora regulation, promotion immune regulation, and antitumor activities. However, the extraction methods of Crataegus pinnatifida polysaccharides lack innovation, the primary structure is relatively limited, and the biological activity mechanism needs to be further explored. Therefore, this review summarizes the research status of the extraction, purification, structural characterization, biological activity, and product application of Crataegus pinnatifida polysaccharides. The purpose of this study is to generate support for further development and application of polysaccharides from Crataegus pinnatifida.


Assuntos
Crataegus , Rosaceae , Crataegus/química , Polissacarídeos/farmacologia , Antioxidantes
14.
Plant Foods Hum Nutr ; 78(2): 390-398, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37249735

RESUMO

An acidic polysaccharide (SMP) with a molecular weight (Mw) of 1.28 × 106 Da was isolated from Salvia miltiorrhiza. The monosaccharide composition in molar percentages was rhamnose (Rha): galacturonic acid (GalA): galactose (Gal): arabinose (Ara) = 6.15: 55.98: 21.27: 16.69. The results of simulated digestion in vitro showed that SMP was not degraded in saliva, gastric juice or intestinal juice. The Y maze test and new object recognition test showed that SMP could improve the working memory impairment of aging mice. SMP could also increase the activity of superoxide dismutase (SOD) and catalase (CAT) in serum and brain tissue, decrease the content of malondialdehyde (MDA), decrease the levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in brain tissue, and increase the content of short-chain fatty acids (SCFA) in the intestine. In addition, SMP could also regulate the intestinal flora structure, including increasing the relative abundance of Firmicutes and Bacteroidetes and decreasing the relative abundance of Proteobacteria. This work lays a foundation for the development of functional foods related to Salvia miltiorrhiza.


Assuntos
Salvia miltiorrhiza , Camundongos , Animais , Salvia miltiorrhiza/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Monossacarídeos/química , Superóxido Dismutase , Digestão
15.
Nanomedicine (Lond) ; 18(7): 613-631, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37183879

RESUMO

Background: The subcellular organelle-targeting strategy has attracted wide attention for a variety of reasons, including strong specificity, high accuracy, low dose administration and few side effects. It is an important and challenging task to explore the multisubcellular organelle-targeting strategy to achieve effective tumor treatment. Materials & methods: Using bovine serum albumin as a nanoreactor, BSA/Cu/NQ/IR780/DOX nanoparticles (NPs) were constructed via drug-induced protein self-assembly. Folic acid was then coupled to the surface of NPs to prepare folate receptor-targeted FA-BSA/Cu/NQ/IR780/DOX NPs. Results & conclusion: The FA-BSA/Cu/NQ/IR780/DOX NPs exhibit multifunctional properties, including multisubcellular organelle-targeting, induction of response release in the tumor microenvironment, fluorescence imaging capabilities and potential for synergistic chemotherapy and photodynamic/photothermal tumor therapy.


The subcellular organelle-targeting strategy has attracted wide attention for a variety of reasons, including strong specificity, high accuracy, low dose administration and few side effects. Previous research has been mostly restricted to one or two subcellular organelle therapies. Despite promising results, the impact of these studies is limited by the hostile conditions of lysosomes, drug efflux facilitated by P-glycoprotein (P-gp), and the expression of antiapoptotic factors, all of which undermine the effectiveness of the treatments. Therefore, it is an important and challenging task to explore the multisubcellular organelle-targeting strategy to achieve effective tumor treatment. Herein, a versatile nanoparticle was designed and constructed to target multiple subcellular organelles, respond to stimuli in the tumor microenvironment, enable fluorescence imaging and facilitate synergistic chemotherapy and photodynamic/photothermal tumor therapy.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Fototerapia/métodos , Neoplasias/tratamento farmacológico , Organelas , Doxorrubicina , Linhagem Celular Tumoral , Microambiente Tumoral
16.
Anal Chem ; 95(18): 7278-7285, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37115498

RESUMO

Peroxynitrite (ONOO-), a kind of active nitrogen species, plays an important role in biological systems. Overproduction of ONOO- is closely related to the pathogenesis of many diseases. Therefore, it is necessary to quantify intracellular ONOO- for differentiating health and disease states. Fluorescent probes with near-infrared (NIR) fluorescence can detect ONOO- with high sensitivity and selectivity. However, there is an inevitable problem that many NIR fluorophores are easily oxidized by ONOO- to give a false-negative result. To avoid this problem, herein, we ingeniously propose a "destruction to seek to survive" strategy to detect ONOO-. Two NIR squaraine (SQ) dyes were connected together to form a fluorescent probe (SQDC). This method utilizes the destructive effect of peroxynitrite on one of the SQ moieties of SQDC to eliminate the steric hindrance, enabling the other "survived" SQ segment to enter the hydrophobic cavity of bovine serum albumin (BSA) via the well-known host-guest interactions. The encapsulation of albumin protects the "survived" SQ from further attack of ONOO-. As a result, a NIR fluorescence turn-on response coming from the host-guest interaction between BSA and the "survived" SQ escaped from SQDC was found, which can be used for the detection of ONOO-. The assembly of SQDC mixed with BSA can be located in mitochondria to detect endogenous and exogenous ONOO- sensitively in living cells. As a proof-of-concept method, it is envisioned that this novel detection strategy with a simple assembly would become a powerful means for the detection of ONOO- when employing NIR fluorophores.


Assuntos
Ciclobutanos , Albumina Sérica , Ácido Peroxinitroso , Fenóis/química , Ciclobutanos/química , Soroalbumina Bovina/química , Corantes Fluorescentes/química
17.
Small ; 19(35): e2301670, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37098629

RESUMO

As an alternative to traditional oral and intravenous injections with limited efficacy, transdermal drug delivery (TDD) has shown great promise in tumor treatment. Over the past decade, natural polymers have been designed into various nanocarriers due to their excellent biocompatibility, biodegradability, and easy availability, providing more options for TDD. In addition, surface functionalization modification of the rich functional groups of natural polymers, which in turn are developed into targeted and stimulus-responsive functional materials, allows precise delivery of drugs to tumor sites and release of drugs in response to specific stimuli. It not only improves the treatment efficiency of tumor but also reduces the toxic and side effects to normal tissues. Therefore, the development of natural polymer-based TDD (NPTDD) systems has great potential in tumor therapy. In this review, the mechanism of NPTDD systems such as penetration enhancers, nanoparticles, microneedles, hydrogels and nanofibers prepared from hyaluronic acid, chitosan, sodium alginate, cellulose, heparin and protein, and their applications in tumor therapy are overviewed. This review also outlines the future prospects and current challenges of NPTDD systems for local treatment tumors.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Administração Cutânea , Portadores de Fármacos , Alginatos
18.
Food Chem ; 413: 135658, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36780857

RESUMO

Crataegus pinnatifida is a common food in China, Europe and North America. In order to confirm polysaccharide was the material basis for C. pinnatifida to exert immune regulation. A polysaccharide (CPP) with a molecular weight of 13.58 kDa was isolated from C. pinnatifida. The structure of CPP was determined to be a backbone composed of â†’ 3,5)-α-l-Araf-(1→, with two branches consisting of â†’ 4)-α-d-Galp-(1 â†’ and â†’ 5)-α-l-Araf-(1→, with α-l-Araf and α-d-Manp as the terminal unit. CPP (10 âˆ¼ 500 µg/mL) could promote the secretion of nitric oxide, interleukin-2, interleukin-6 and tumor necrosis factor-α in vitro. CPP could significantly restore the body weight of immunosuppressive mice and improve the immune organ index and interleukin-2, interleukin-6, and tumor necrosis factor-α secretion. In addition, CPP increased the abundance of Bacteroidetes and Verrucomicrobia and decreased the abundance of Proteobacteria at the phylum level. So CPP can regulate the gut microbiota and play an important role in immune regulation.


Assuntos
Crataegus , Microbioma Gastrointestinal , Camundongos , Animais , Interleucina-6/análise , Interleucina-2/análise , Crataegus/química , Fator de Necrose Tumoral alfa/análise , Frutas/química , Polissacarídeos/química
19.
Chem Commun (Camb) ; 59(16): 2199-2207, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36723204

RESUMO

In the design work of fluorescent probes, it is important to consider not only the factors of fluorescence properties but also the environment in which the fluorescent molecule works. This requires the design of auxiliary groups to refine the fluorescent molecule. Nowadays, more and more fluorescent molecules are not limited to the traditional fluorescent probe consisting of a fluorophore, linker arm and recognition group, but integrate the three into one, and introduce auxiliary groups where possible. Auxiliary groups are "catalytic groups" that do not interact with the substrate, or "catalyze" the interaction of the recognition group with the substrate. The introduced auxiliary groups can improve the sensitivity and selectivity of the detection to some extent, which has attracted great interest from researchers. Although previous work has focused on this aspect, no one has summarized it systematically and comprehensively. So this review summarizes the role of auxiliary groups that are classified into three categories according to the different mechanisms between the auxiliary groups and the substance, in improving the performance of fluorescent probes in recent years (2012-2022). In particular, we generalize the mechanisms of the auxiliary groups in improving the sensitivity and selectivity of fluorescent probes. Also, the fundamental principles of auxiliary groups to improve the sensitivity and selectivity of fluorescent probes are discussed and future research directions in this field are proposed.

20.
Chem Commun (Camb) ; 59(23): 3339-3359, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36815500

RESUMO

The advancement and popularity of transdermal drug delivery (TDD) based on the physical transdermal enhancement technique (PTET) has opened a new paradigm for local tumor treatment. The drug can be directly delivered to the tumor site through the skin, thus avoiding the toxic side effects caused by the first-pass effect and achieving high patient compliance. Further development of PTETs has provided many options for antitumor drugs and laid the foundation for future applications of wearable closed-loop targeting drug delivery systems. In this highlight, the different types of PTETs and related mechanisms, and applications of PTET-related tumor detection and therapy are highlighted. According to their type and characteristics, PTETs are categorized as follows: (1) iontophoresis, (2) electroporation, (3) ultrasound, (4) thermal ablation, and (5) microneedles. PTET-related applications in the local treatment of tumors are categorized as follows: (1) melanoma, (2) breast tumor, (3) squamous cell carcinoma, (4) cervical tumor, and (5) others. The challenges and future prospects of existing PTETs are also discussed. This highlight will provide guidance for the design of PTET-based wearable closed-loop targeting drug delivery systems and personalized therapy for tumors.


Assuntos
Absorção Cutânea , Pele , Humanos , Administração Cutânea , Sistemas de Liberação de Medicamentos/métodos , Iontoforese/métodos , Preparações Farmacêuticas/metabolismo , Microinjeções/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA