Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
JMIR Med Inform ; 12: e49978, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38904478

RESUMO

Background: The use of chronic disease information systems in hospitals and communities plays a significant role in disease prevention, control, and monitoring. However, there are several limitations to these systems, including that the platforms are generally isolated, the patient health information and medical resources are not effectively integrated, and the "Internet Plus Healthcare" technology model is not implemented throughout the patient consultation process. Objective: The aim of this study was to evaluate the efficiency of the application of a hospital case management information system in a general hospital in the context of chronic respiratory diseases as a model case. Methods: A chronic disease management information system was developed for use in general hospitals based on internet technology, a chronic disease case management model, and an overall quality management model. Using this system, the case managers provided sophisticated inpatient, outpatient, and home medical services for patients with chronic respiratory diseases. Chronic respiratory disease case management quality indicators (number of managed cases, number of patients accepting routine follow-up services, follow-up visit rate, pulmonary function test rate, admission rate for acute exacerbations, chronic respiratory diseases knowledge awareness rate, and patient satisfaction) were evaluated before (2019-2020) and after (2021-2022) implementation of the chronic disease management information system. Results: Before implementation of the chronic disease management information system, 1808 cases were managed in the general hospital, and an average of 603 (SD 137) people were provided with routine follow-up services. After use of the information system, 5868 cases were managed and 2056 (SD 211) patients were routinely followed-up, representing a significant increase of 3.2 and 3.4 times the respective values before use (U=342.779; P<.001). With respect to the quality of case management, compared to the indicators measured before use, the achievement rate of follow-up examination increased by 50.2%, the achievement rate of the pulmonary function test increased by 26.2%, the awareness rate of chronic respiratory disease knowledge increased by 20.1%, the retention rate increased by 16.3%, and the patient satisfaction rate increased by 9.6% (all P<.001), while the admission rate of acute exacerbation decreased by 42.4% (P<.001) after use of the chronic disease management information system. Conclusions: Use of a chronic disease management information system improves the quality of chronic respiratory disease case management and reduces the admission rate of patients owing to acute exacerbations of their diseases.

2.
BMC Pediatr ; 24(1): 292, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689260

RESUMO

BACKGROUND: Breast milk contains various crucial nutrients and biologically active substances and is ideal for newborns. This study aimed to analyze the composition of breast milk from mothers of premature and full-term infants and its influences on the growth of infants. METHODS: Infant-mother dyads examined at our Hospital (March 2016 to May 2017) were included. Milk was collected at 0-1 month, 2-3 months, and 5-6 months and analyzed using a MIRIS human milk analyzer. Z-scores of weight-for-length (WLZ), weight-for-age (WAZ), and length-for-age (LAZ) were calculated. RESULTS: This study included full-term (> 37 weeks of gestation, n = 177) and premature (< 37 weeks, n = 94) infant-mother dyads. The premature infants showed higher ΔWAZ, ΔLAZ, and ΔWLZ from infancy to toddlerhood for the physical growth speed, compared with term infants (P < 0.001). All proteins and true protein components of breast milk decreased with infants' age (P < 0.001). For premature and full-term infants, differences in ΔWAZ and ΔLAZ from birth to infancy and the difference in ΔLAZ, WAZ, and LAZ in toddlerhood were positively associated with non-protein nitrogen (NPN) (all P < 0.05), while the Z-score differences in ΔWLZ from birth to infancy were negatively associated with NPN (all P < 0.05). For premature babies, from birth to infancy stage, ΔWAZ was positively correlated with NPN and carbohydrates while negatively correlated with dry matter (all P < 0.05), and ΔLAZ correlated with NPN (ß = 0.428, P = 0.005). CONCLUSION: Breastfeeding helped premature infants compensatory growth when compared to term infants. Whileduring early infancy stage ΔWLZ gain was negatively associated with increased amounts of NPN in breast milk. This might mean although NPN increase the Z-scores of weight-for-age and length-for-age, with no rise in adipose tissue mass.


Assuntos
Desenvolvimento Infantil , Recém-Nascido Prematuro , Leite Humano , Humanos , Leite Humano/química , Feminino , Recém-Nascido Prematuro/crescimento & desenvolvimento , Recém-Nascido , Lactente , Masculino , Desenvolvimento Infantil/fisiologia , Estatura , Adulto , Peso Corporal
3.
J Hazard Mater ; 469: 134021, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38490146

RESUMO

Nitrite (NO2-) is categorized as a carcinogenic substance and is subjected to severe limitations in water and food. To safeguard the public's health, developing fast and convenient methods for determination of NO2- is of significance. Point-of-care testing (POCT) affords demotic measurement of NO2- and shows huge potential in future technology beyond those possible with traditional methods. Here, a novel ratiometric fluorescent nanoprobe (Ru@MOF-NH2) is developed by integrating UiO-66-NH2 with tris(2,2'-bipyridyl)ruthenium(II) ([Ru(bpy)3]2+) through a one-pot approach. The special diazo-reaction between the amino group of UiO-66-NH2 and NO2- is responsible for the report signal (blue emission) with high selectivity and the red emission from [Ru(bpy)3]2+ offers the reference signal. The proposed probe shows obviously distinguishable color change from blue to red towards NO2- via naked-eye. Moreover, using a smartphone as the detection device to read color hue, ultra-sensitive quantitative detection of NO2- is achieved with a low limit of detection at 0.6 µΜ. The accuracy and repeatability determined in spiked samples through quantitative visualization is in the range of 105 to 117% with a coefficient of variation below 4.3%. This POCT sensing platform presents a promising strategy for detecting NO2- and expands the potential applications for on-site monitoring in food and environment safety assessment.


Assuntos
Estruturas Metalorgânicas , Ácidos Ftálicos , Nitritos , Fluorescência , Dióxido de Nitrogênio , Corantes Fluorescentes
4.
Front Microbiol ; 15: 1341451, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38322321

RESUMO

Background: Generally, enterococci bacteria cause nosocomial infections and are major indicators of bacterial contamination in marine bathing beach. However, a method for the rapid and simultaneous detection of multiple pathogenic enterococci has not been developed on account of the wide variety of pathogenic enterococci and their existence in complex matrices. Methods: Immunoinformatics tools were used to design a multi-epitope antigen for the detection of various pathogenic enterococci by using the sequence of dltD gene on enterococci lipoteichoic acid (LTA) surface, which is associated with toxicological effects. The multi-epitopes included enterococci such as Enterococcus faecalis, E. gallinarum, E. raffinosus, E. durans, E. faecium, E. hirae, E. thailandicus, E. casseliflavus, E. avium, E. mundtii, E. lactis, E. solitarius, E. pseudoavium, and E. malodoratum. Microscale thermophoresis (MST) and western blot were carried out to detect the affinity between multi-epitope antigens and antibodies and between multi-epitope antibodies and bacteria. Furthermore, the detection of pathogenic enterococci was carried out by using immunomagnetic beads (IMBs) and immune chromatographic test strip (ICTS). Results: The multi-epitope antibody had a satisfactory affinity to the antigen and enterococci. IMBs and ICTS were detected with a minimum of 101 CFU/mL and showed incompatibility for Vibrio parahemolyticus, V. vulnifcus, V. harveyi, V. anguillarum, and Edwardsiella tarda. Implication: The present study demonstrated that the multi-epitope antigens exhibited excellent specificity and sensitivity, making them highly suitable for efficient on-site screening of enterococci bacteria in marine bathing beaches.

5.
Int J Mol Sci ; 25(2)2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38256153

RESUMO

Tea plants have to adapt to frequently challenging environments due to their sessile lifestyle and perennial evergreen nature. Jasmonates regulate not only tea plants' responses to biotic stresses, including herbivore attack and pathogen infection, but also tolerance to abiotic stresses, such as extreme weather conditions and osmotic stress. In this review, we summarize recent progress about jasmonaic acid (JA) biosynthesis and signaling pathways, as well as the underlying mechanisms mediated by jasmontes in tea plants in responses to biotic stresses and abiotic stresses. This review provides a reference for future research on the JA signaling pathway in terms of its regulation against various stresses of tea plants. Due to the lack of a genetic transformation system, the JA pathway of tea plants is still in the preliminary stages. It is necessary to perform further efforts to identify new components involved in the JA regulatory pathway through the combination of genetic and biochemical methods.


Assuntos
Camellia sinensis , Oxilipinas , Ciclopentanos , Transdução de Sinais , Chá
6.
Plants (Basel) ; 13(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38276780

RESUMO

Tea is the second most popular nonalcoholic beverage consumed in the world, made from the buds and young leaves of the tea plants (Camellia sinensis). Tea trees, perennial evergreen plants, contain abundant specialized metabolites and suffer from severe herbivore and pathogen attacks in nature. Thus, there has been considerable attention focusing on investigating the precise function of specialized metabolites in plant resistance against pests and diseases. In this review, firstly, the responses of specialized metabolites (including phytohormones, volatile compounds, flavonoids, caffeine, and L-theanine) to different attacks by pests and pathogens were compared. Secondly, research progress on the defensive functions and action modes of specialized metabolites, along with the intrinsic molecular mechanisms in tea plants, was summarized. Finally, the critical questions about specialized metabolites were proposed for better future research on phytohormone-dependent biosynthesis, the characteristics of defense responses to different stresses, and molecular mechanisms. This review provides an update on the biological functions of specialized metabolites of tea plants in defense against two pests and two pathogens.

7.
Plant Cell Environ ; 47(2): 682-697, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37882446

RESUMO

Quercetin is a key flavonol in tea plants (Camellia sinensis (L.) O. Kuntze) with various health benefits, and it often occurs in the form of glucosides. The roles of quercetin and its glucosylated forms in plant defense are generally not well-studied, and remain unknown in the defense of tea. Here, we found higher contents of quercetin glucosides and a decline of the aglucone upon Ectropis grisescens (E. grisescens) infestation of tea. Nine UGTs were strongly induced, among which UGT89AC1 exhibited the highest activity toward quercetin in vitro and in vivo. The mass of E. grisescens larvae that fed on plants with repressed UGT89AC1 or varieties with lower levels of UGT89AC1 was significantly lower than that of larvae fed on controls. Artificial diet supplemented with quercetin glucoside also reduced the larval growth rate, whereas artificial diet supplemented with free quercetin had no significant effect on larval growth. UGT89AC1 was located in both the cytoplasm and nucleus, and its expression was modulated by JA, JA-ILE, and MeJA. These findings demonstrate that quercetin glucosylation serves a defensive role in tea against herbivory. Our results also provide novel insights into the ecological relevance of flavonoid glycosides under biotic stress in plants.


Assuntos
Camellia sinensis , Lepidópteros , Animais , Camellia sinensis/metabolismo , Quercetina/farmacologia , Quercetina/metabolismo , Herbivoria , Larva , Chá/metabolismo , Glucosídeos/metabolismo , Proteínas de Plantas/metabolismo
8.
Hortic Res ; 10(10): uhad178, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37868619

RESUMO

Protease inhibitors promote herbivore resistance in diverse plant species. Although many inducible protease inhibitors have been identified, there are limited reports available on the biological relevance and molecular basis of constitutive protease inhibitors in herbivore resistance. Here, we identified a serine protease inhibitor, CsSERPIN1, from the tea plant (Camellia sinensis). Expression of CsSERPIN1 was not strongly affected by the assessed biotic and abiotic stresses. In vitro and in vivo experiments showed that CsSERPIN1 strongly inhibited the activities of digestive protease activities of trypsin and chymotrypsin. Transient or heterologous expression of CsSERPIN1 significantly reduced herbivory by two destructive herbivores, the tea geometrid and fall armyworm, in tea and Arabidopsis plants, respectively. The expression of CsSERPIN1 in Arabidopsis did not negatively influence the growth of the plants under the measured parameters. Our findings suggest that CsSERPIN1 can inactivate gut digestive proteases and suppress the growth and development of herbivores, making it a promising candidate for pest prevention in agriculture.

9.
Sci Rep ; 13(1): 16670, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37794229

RESUMO

Serum anion gap (AG) is closely related to mortality in critically ill patients with several diseases. We aimed to determine the relationship between serum AG levels and 28-day intensive care unit (ICU) mortality in patients with diastolic heart failure (DHF). This cohort study enrolled critically ill patients with DHF from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database. Serum AG levels were calculated using the traditional and albumin-adjusted methods. Multivariate Cox proportional hazards regression and restricted cubic spline curves were used to determine the correlation between serum AG levels and 28-day ICU mortality. We used receiver operating characteristic (ROC) curves and area under the curve (AUC) to compare the ability of traditional and albumin-adjusted AG to predict mortality. Overall, 3290 patients were included. Multivariate analysis showed an association of high levels of traditional (hazard ratio [HR], 1.48; 95% confidence interval [CI], 1.1-1.98, p = 0.009) and albumin-adjusted AG (HR, 1.36; 95% CI, 1.02-1.79, p = 0.033) with higher risk of 28-day ICU mortality. Restricted cubic spline curves indicated a linear relationship between AG level and 28-day ICU mortality. Comparison of the ROC curves revealed that albumin-adjusted AG had a greater ability to predict 28-day ICU mortality compared with traditional AG (AUCs of 0.569 [95% CI, 0.536-0.601] and 0.619 [95% CI, 0.588-0.649], respectively). In ICU patients with DHF, higher levels of traditional and albumin-adjusted AG were associated with higher 28-day ICU mortality. Albumin-adjusted AG exhibited greater predictive ability for mortality compared with traditional AG.


Assuntos
Equilíbrio Ácido-Base , Insuficiência Cardíaca Diastólica , Humanos , Estudos de Coortes , Estado Terminal , Estudos Retrospectivos , Prognóstico , Cuidados Críticos , Unidades de Terapia Intensiva , Albuminas
10.
PeerJ Comput Sci ; 9: e1433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37409083

RESUMO

Presently, the focus of target detection is shifting towards the integration of information acquired from multiple sensors. When faced with a vast amount of data from various sensors, ensuring data security during transmission and storage in the cloud becomes a primary concern. Data files can be encrypted and stored in the cloud. When using data, the required data files can be returned through ciphertext retrieval, and then searchable encryption technology can be developed. However, the existing searchable encryption algorithms mainly ignore the data explosion problem in a cloud computing environment. The issue of authorised access under cloud computing has yet to be solved uniformly, resulting in a waste of computing power by data users when processing more and more data. Furthermore, to save computing resources, ECS (encrypted cloud storage) may only return a fragment of results in response to a search query, lacking a practical and universal verification mechanism. Therefore, this article proposes a lightweight, fine-grained searchable encryption scheme tailored to the cloud edge computing environment. We generate ciphertext and search trap gates for terminal devices based on bilinear pairs and introduce access policies to restrict ciphertext search permissions, which improves the efficiency of ciphertext generation and retrieval. This scheme allows for encryption and trapdoor calculation generation on auxiliary terminal devices, with complex calculations carried out on edge devices. The resulting method ensures secure data access, fast search in multi-sensor network tracking, and accelerates computing speed while maintaining data security. Ultimately, experimental comparisons and analyses demonstrate that the proposed method improves data retrieval efficiency by approximately 62%, reduces the storage overhead of the public key, ciphertext index, and verifiable searchable ciphertext by half, and effectively mitigates delays in data transmission and computation processes.

11.
PeerJ Comput Sci ; 9: e1417, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346715

RESUMO

Natural disasters are usually sudden and unpredictable, so it is too difficult to infer them. Reducing the impact of sudden natural disasters on the economy and society is a very effective method to control public opinion about disasters and reconstruct them after disasters through social media. Thus, we propose a public sentiment feature extraction method by social media transmission to realize the intelligent analysis of natural disaster public opinion. Firstly, we offer a public opinion analysis method based on emotional features, which uses feature extraction and Transformer technology to perceive the sentiment in public opinion samples. Then, the extracted features are used to identify the public emotions intelligently, and the collection of public emotions in natural disasters is realized. Finally, through the collected emotional information, the public's demands and needs in natural disasters are obtained, and the natural disaster public opinion analysis system based on social media communication is realized. Experiments demonstrate that our algorithm can identify the category of public opinion on natural disasters with an accuracy of 90.54%. In addition, our natural disaster public opinion analysis system can deconstruct the current situation of natural disasters from point to point and grasp the disaster situation in real-time.

12.
AoB Plants ; 15(2): plac062, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36844915

RESUMO

Stolon connection of clonal plants can translocate resources and signalling molecules between interconnected ramets to enhance resistance. Plants are well known to enhance leaf anatomical structure and vein density to respond to insect herbivory. Herbivory signalling molecules are transferred through vascular system to alert distant undamaged leaves, which is called systemic defence induction. Here, we investigated how clonal integration modulates leaf vasculature and anatomical structure of Bouteloua dactyloides ramets to cope with different levels of simulated herbivory. Ramet pairs were subject to six treatments, daughter ramets were exposed to three defoliation levels (0 %, 40 % or 80 % leaf removal) and their stolon connections to mother ramets were either severed or kept intact. Local 40 % defoliation increased vein density and adaxial/abaxial cuticle thickness, decreased leaf width and areolar area of daughter ramets. However, such effects of 80 % defoliation were much smaller. Compared with remote 40 % defoliation, remote 80 % defoliation increased leaf width and areolar area and decreased vein density of interconnected undefoliated mother ramets. Without simulated herbivory, stolon connection negatively affected most leaf microstructural traits of both ramets except from denser veins of mother ramets and more bundle sheath cells of daughter ramets. The negative effect of stolon connection on leaf mechanical structures of daughter ramets was ameliorated in the 40 % defoliation treatment, but not in the 80 % defoliation treatment. Stolon connection increased vein density and decreased areolar area of daughter ramets in the 40 % defoliation treatment. In contrast, stolon connection increased areolar area and decreased bundle sheath cell number of 80 % defoliated daughter ramets. Defoliation signals were transmitted from younger ramets to older ramets to change their leaf biomechanical structure. Clonal integration can adjust leaf microstructure of younger ramets according to the degree of herbivory stress, especially leaf vasculature.

13.
Adv Mater ; 35(17): e2210345, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36772897

RESUMO

Hitherto, Cu2 Se incorporated with a dispersed second phase shows extremely low thermal conductivity and excellent thermoelectric properties. However, the significant mismatch in electronic band structure between the second phases and the matrix often causes a deterioration of carrier mobility. In this work, based on density functional theory (DFT) calculations, the electronic band structure of the second phase is adjusted through doping S and Te. It is found that Cu2 Se0.88 S0.06 Te0.06 has a highly similar electronic band structure to the Cu2 Se matrix, which results in high carrier mobility and power factor in Cu2 Se-based composite materials. Additionally, the dispersed second-phase Cu2 Se0.88 S0.06 Te0.06 , dislocations, and nanograins are observed in the Cu2 Se/5 wt% Cu2 Se0.88 S0.06 Te0.06 product, which leads to a substantial reduction in the thermal conductivity. Finally, high figure of merit (zT) values of 2.04 (by Dulong-Petit heat capacity) and 2.34 (by Differential Scanning Calorimetry (DSC) measured heat capacity) are achieved at 850 K, which are about 65% higher than that of Cu2 Se in this work and comparable to the recently reported p-type Cu2 Se with outstanding performance.

14.
Front Microbiol ; 14: 1108120, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819025

RESUMO

Exopolysaccharides (EPSs) produced by lactic acid bacteria possess various bioactivities and potential attractions for scientific exploration and commercial development. An EPS-producing bacterial strain, RSG7, was previously isolated from the pepino and identified as Leuconostoc mesenteroides. Based on the analyses of high-performance size exclusion chromatography, high-performance ion chromatography, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, and methylation, the RSG7 EPS was identified as a dextran with a molecular weight of 5.47 × 106 Da and consisted of α-(1→6) glycosidic linkages as backbone and α-(1→2), α-(1→3), α-(1→4), and α-(1→6) glycosidic linkages as side chains. Scanning electron microscopy observed a honeycomb-like porous structure of RSG7 dextran, and this dextran formed aggregations with irregular hill-shaped lumps according to atomic force microscopy analysis. Physical-chemical investigations suggested that RSG7 dextran possessed excellent viscosity at high concentration, low temperature, and high pH; showed a superior emulsifying capacity of tested vegetable oils than that of hydrocarbons; and owned the maximal flocculating activity (10.74 ± 0.23) and flocculating rate (93.46 ± 0.07%) in the suspended solid of activated carbon. In addition, the dextran could coagulate sucrose-supplemented milk and implied potential probiotics in vitro. Together, these results collectively describe a valuable dextran with unique characteristics for exploitation in food applications.

15.
J Environ Manage ; 331: 117245, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681034

RESUMO

Models and information and communication technology (ICT) can assist in the effective supervision of urban receiving water bodies and drainage systems. Single model-based decision tools, e.g., water quality models and the pollution source identification (PSI) method, have been widely reported in this field. However, a systematic pathway for environmental decision support system (EDSS) construction by integrating advanced single techniques has rarely been reported, impeding engineering applications. This paper presents an integrated supervision framework (UrbanWQEWIS) involving monitoring-early warning-source identification-emergency disposal to safeguard the urban water quality, where the data, model, equipment and knowledge are smoothly and logically linked. The generic architecture, all-in-one equipment and three key model components are introduced. A pilot EDSS is developed and deployed in the Maozhou River, China, with the assistance of environmental Internet of Things (IoT) technology. These key model components are successfully validated via in situ monitoring data and dye tracing experiments. In particular, fluorescence fingerprint-based qualitative PSI and Bayesian-based quantitative PSI methods are effectively coupled, which can largely reduce system costs and enhance flexibility. The presented supervision framework delivers a state-of-the-art management tool in the digital water era. The proposed technical pathway of EDSS development provides a valuable reference for other regions.


Assuntos
Rios , Qualidade da Água , Teorema de Bayes , Água Doce , Comunicação , Poluição da Água/análise
17.
ACS Omega ; 7(38): 34352-34358, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36188305

RESUMO

A highly efficient synthesis reaction of carboxylic anhydrides catalyzed by triphenylphosphine oxide is described for the quick synthesis of a range of symmetric carboxylic anhydrides and cyclic anhydrides under mild and neutral conditions with a high yield. The system adopts the strong reactive intermediate Ph3PCl2 as the catalyst of carboxylic acid salt; driven by catalytic reaction, the synthesis takes a relatively short time to complete.

18.
Polymers (Basel) ; 14(16)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36015487

RESUMO

Organic-inorganic nanocomposite fibers can avoid the agglomeration of single nanoparticles and reduce the cost (nanoparticles assembled on the surface of nanofibers), but also can produce new chemical, electrical, optical, and other properties, with a composite synergistic effect. Aromatic polyimide (PI) is a high-performance polymer with a rigid heterocyclic imide ring and an aromatic benzene ring in its macromolecular framework. Due to its excellent mechanical properties, thermal stability, and easy-to-adjust molecular structure, PI has been widely used in electronics, aerospace, automotive, and other industries related to many applications. Here, we report that TiO2 nanorods were grown on polyimide nanofibers by hydrothermal reaction, and MoS2 nanosheets were grown on TiO2 nanorods the same way. Based on theoretical analysis and experimental findings, the possible growth mechanism was determined in detail. Further experiments showed that MoS2 nanosheets were uniformly coated on the surface of TiO2 nanorods. The TiO2 nanorods have photocatalytic activity in the ultraviolet region, but the bandgap of organic/inorganic layered nanocomposites can redshift to visible light and improve their photocatalytic performance.

19.
PLoS One ; 17(7): e0271177, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35830425

RESUMO

BACKGROUND: The diabetes mellitus prevalence is rapidly increasing in most parts of the world and has become a vital health problem. Probiotic and herbal foods are valuable in the treatment of diabetes. METHODS AND PERFORMANCE: In this study, Bacillus licheniformis (BL) and Astragalus membranaceus extract (AE) were given with food to InR[E19]/TM2 Drosophila melanogaster, and the blood glucose, antioxidation activity and intestinal microbiota were investigated. The obtained results showed that BA (BL and AE combination) supplementation markedly decreased the blood glucose concentration compared with the standard diet control group, accompanied by significantly increased enzymatic activities of catalase (CAT), decreased MDA levels and prolonged lifespan of InR[E19]/TM2 D. melanogaster. The treatments with BL, AE and BA also ameliorated intestinal microbiota equilibrium by increasing the population of Lactobacillus and significantly decreasing the abundance of Wolbachia. In addition, clearly different evolutionary clusters were found among the control, BL, AE and BA-supplemented diets, and the beneficial microbiota, Lactobacillaceae and Acetobacter, were found to be significantly increased in male flies that were fed BA. These results indicated that dietary supplementation with AE combined with BL not only decreased blood glucose but also extended the lifespan, with CAT increasing, MDA decreasing, and intestinal microbiota improving in InR[E19]/TM2 D. melanogaster. CONCLUSION: The obtained results showed that dietary supplementation with BL and AE, under the synergistic effect of BL and AE, not only prolonged the lifespan of InR[E19]/TM2 D. melanogaster, increased body weight, and improved the body's antiaging enzyme activity but also effectively improved the types and quantities of beneficial bacteria in the intestinal flora of InR[E19]/TM2 D. melanogaster to improve the characteristics of diabetes symptoms. This study provides scientific evidence for a safe and effective dietary therapeutic method for diabetes mellitus.


Assuntos
Bacillus licheniformis , Microbioma Gastrointestinal , Animais , Antioxidantes/farmacologia , Astragalus propinquus , Bacillus licheniformis/fisiologia , Glicemia , Dieta , Suplementos Nutricionais/análise , Drosophila melanogaster/microbiologia , Masculino
20.
Front Plant Sci ; 13: 833489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211143

RESUMO

Gallic acid (GA), an important polyphenolic compound in the plant, is a well-known antioxidant, antihyperglycemic, and anti-lipid peroxidative agent. Recently, GA treatment exhibited ameliorative effects on plants in response to some abiotic stresses. However, the elicitation effect of GA on plant defense against herbivorous insects has not yet been reported. In this study, we found that the exogenous application of GA induced the direct defense of tea plant (Camellia sinensis) against tea geometrid (Ectropis obliqua) larvae, through activating jasmonic acid (JA) signaling and phenylpropanoid pathways. These signaling cascades resulted in the efficient induction of several defensive compounds. Among them, astragalin, naringenin, and epigallocatechin-3-gallate were the three of the most active anti-feeding compounds. However, the exogenous GA treatment did not affect the preference of E. obliqua female moths and larval parasitoid Apanteles sp. Our study suggests that GA may serve as an elicitor that triggers a direct defense response against tea geometrid larvae in tea plants. This study will help to deepen the understanding of the interaction between plants and phytophagous insects and also provide theoretical and technical guidance for the development of plant defense elicitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA