Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Math Biosci Eng ; 21(1): 272-299, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38303423

RESUMO

N6-methyladenosine (m6A) is a crucial RNA modification involved in various biological activities. Computational methods have been developed for the detection of m6A sites in Saccharomyces cerevisiae at base-resolution due to their cost-effectiveness and efficiency. However, the generalization of these methods has been hindered by limited base-resolution datasets. Additionally, RMBase contains a vast number of low-resolution m6A sites for Saccharomyces cerevisiae, and base-resolution sites are often inferred from these low-resolution results through post-calibration. We propose MTTLm6A, a multi-task transfer learning approach for base-resolution mRNA m6A site prediction based on an improved transformer. First, the RNA sequences are encoded by using one-hot encoding. Then, we construct a multi-task model that combines a convolutional neural network with a multi-head-attention deep framework. This model not only detects low-resolution m6A sites, it also assigns reasonable probabilities to the predicted sites. Finally, we employ transfer learning to predict base-resolution m6A sites based on the low-resolution m6A sites. Experimental results on Saccharomyces cerevisiae m6A and Homo sapiens m1A data demonstrate that MTTLm6A respectively achieved area under the receiver operating characteristic (AUROC) values of 77.13% and 92.9%, outperforming the state-of-the-art models. At the same time, it shows that the model has strong generalization ability. To enhance user convenience, we have made a user-friendly web server for MTTLm6A publicly available at http://47.242.23.141/MTTLm6A/index.php.


Assuntos
Adenosina , Saccharomyces cerevisiae , Humanos , RNA Mensageiro/genética , Saccharomyces cerevisiae/genética , Redes Neurais de Computação , Aprendizado de Máquina
2.
BMC Bioinformatics ; 25(1): 32, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233745

RESUMO

BACKGROUND: Epi-transcriptome regulation through post-transcriptional RNA modifications is essential for all RNA types. Precise recognition of RNA modifications is critical for understanding their functions and regulatory mechanisms. However, wet experimental methods are often costly and time-consuming, limiting their wide range of applications. Therefore, recent research has focused on developing computational methods, particularly deep learning (DL). Bidirectional long short-term memory (BiLSTM), convolutional neural network (CNN), and the transformer have demonstrated achievements in modification site prediction. However, BiLSTM cannot achieve parallel computation, leading to a long training time, CNN cannot learn the dependencies of the long distance of the sequence, and the Transformer lacks information interaction with sequences at different scales. This insight underscores the necessity for continued research and development in natural language processing (NLP) and DL to devise an enhanced prediction framework that can effectively address the challenges presented. RESULTS: This study presents a multi-scale self- and cross-attention network (MSCAN) to identify the RNA methylation site using an NLP and DL way. Experiment results on twelve RNA modification sites (m6A, m1A, m5C, m5U, m6Am, m7G, Ψ, I, Am, Cm, Gm, and Um) reveal that the area under the receiver operating characteristic of MSCAN obtains respectively 98.34%, 85.41%, 97.29%, 96.74%, 99.04%, 79.94%, 76.22%, 65.69%, 92.92%, 92.03%, 95.77%, 89.66%, which is better than the state-of-the-art prediction model. This indicates that the model has strong generalization capabilities. Furthermore, MSCAN reveals a strong association among different types of RNA modifications from an experimental perspective. A user-friendly web server for predicting twelve widely occurring human RNA modification sites (m6A, m1A, m5C, m5U, m6Am, m7G, Ψ, I, Am, Cm, Gm, and Um) is available at http://47.242.23.141/MSCAN/index.php . CONCLUSIONS: A predictor framework has been developed through binary classification to predict RNA methylation sites.


Assuntos
Metilação de RNA , RNA , Humanos , RNA/genética , Redes Neurais de Computação , Metilação , Processamento Pós-Transcricional do RNA
3.
BMC Bioinformatics ; 23(1): 221, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676633

RESUMO

BACKGROUND: Recent research recommends that epi-transcriptome regulation through post-transcriptional RNA modifications is essential for all sorts of RNA. Exact identification of RNA modification is vital for understanding their purposes and regulatory mechanisms. However, traditional experimental methods of identifying RNA modification sites are relatively complicated, time-consuming, and laborious. Machine learning approaches have been applied in the procedures of RNA sequence features extraction and classification in a computational way, which may supplement experimental approaches more efficiently. Recently, convolutional neural network (CNN) and long short-term memory (LSTM) have been demonstrated achievements in modification site prediction on account of their powerful functions in representation learning. However, CNN can learn the local response from the spatial data but cannot learn sequential correlations. And LSTM is specialized for sequential modeling and can access both the contextual representation but lacks spatial data extraction compared with CNN. There is strong motivation to construct a prediction framework using natural language processing (NLP), deep learning (DL) for these reasons. RESULTS: This study presents an ensemble multiscale deep learning predictor (EMDLP) to identify RNA methylation sites in an NLP and DL way. It organically combines the dilated convolution and Bidirectional LSTM (BiLSTM), which helps to take better advantage of the local and global information for site prediction. The first step of EMDLP is to represent the RNA sequences in an NLP way. Thus, three encodings, e.g., RNA word embedding, One-hot encoding, and RGloVe, which is an improved learning method of word vector representation based on GloVe, are adopted to decipher sites from the viewpoints of the local and global information. Then, a dilated convolutional Bidirectional LSTM network (DCB) model is constructed with the dilated convolutional neural network (DCNN) followed by BiLSTM to extract potential contributing features for methylation site prediction. Finally, these three encoding methods are integrated by a soft vote to obtain better predictive performance. Experiment results on m1A and m6A reveal that the area under the receiver operating characteristic(AUROC) of EMDLP obtains respectively 95.56%, 85.24%, and outperforms the state-of-the-art models. To maximize user convenience, a user-friendly webserver for EMDLP was publicly available at http://www.labiip.net/EMDLP/index.php ( http://47.104.130.81/EMDLP/index.php ). CONCLUSIONS: We developed a predictor for m1A and m6A methylation sites.


Assuntos
Aprendizado Profundo , RNA , Sequência de Bases , Metilação , Processamento de Linguagem Natural
4.
Sensors (Basel) ; 20(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532148

RESUMO

In traditional underwater wireless sensor networks (UWSNs), it is difficult to establish reliable communication links as the acoustic wave experiences severe multipath effect, channel fading, and ambient noise. Recently, with the assistance of magnetic induction (MI) technique, cooperative multi-input-multi-output (MIMO) is utilized in UWSNs to enable the reliable long range underwater communication. Compared with the acoustic-based UWSNs, the UWSNs adopting MI-assisted acoustic cooperative MIMO are referred to as heterogeneous UWSNs, which are able to significantly improve the effective cover space and network throughput. Due to the complex channel characteristics and the heterogeneous architecture, the connectivity of underwater MI-assisted acoustic cooperative MIMO networks is much more complicated than that of acoustic-based UWSNs. In this paper, a mathematical model is proposed to analyze the connectivity of the networks, which considers the effects of channel characteristics, system parameters, and synchronization errors. The lower and upper bounds of the connectivity probability are also derived, which provide guidelines for the design and deployment of underwater MI-assisted acoustic cooperative MIMO networks. Monte Carlo simulations were performed, and the results validate the accuracy of the proposed model.

5.
IEEE Access ; 8: 115655-115661, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34192110

RESUMO

The recent outbreak of the coronavirus disease 2019 (COVID-19) has rapidly become a pandemic, which calls for prompt action in identifying suspected cases at an early stage through risk prediction. To suppress its further spread, we exploit the social relationships between mobile devices in the Social Internet of Things (SIoT) to help control its propagation by allocating the limited protective resources to the influential so-called high-degree individuals to stem the tide of precipitated spreading. By exploiting the so-called differential contact intensity and the infectious rate in susceptible-exposed-infected-removed (SEIR) epidemic model, the resultant optimization problem can be transformed into the minimum weight vertex cover (MWVC) problem of graph theory. To solve this problem in a high-dynamic random network topology, we propose an adaptive scheme by relying on the graph embedding technique during the state representation and reinforcement learning in the training phase. By relying on a pair of real-life datasets, the results demonstrate that our scheme can beneficially reduce the epidemiological reproduction rate of the infection. This technique has the potential of assisting in the early identification of COVID-19 cases.

6.
Sensors (Basel) ; 19(20)2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-31635243

RESUMO

Massive machine-type communication (mMTC) is investigated as one of three typical scenes of the 5th-generation (5G) network. In this paper, we propose a 5G-enabled internet of things (IoT) in which some enhanced mobile broadband devices transmit video stream to a centralized controller and some mMTC devices exchange short packet data with adjacent devices via D2D communication to promote inter-device cooperation. Since massive MTC devices have data transmission requirements in 5G-enabled IoT with limited spectrum resources, the subcarrier allocation problem is investigated to maximize the connectivity of mMTC devices subject to the quality of service (QoS) requirement of enhanced Mobile Broadband (eMBB) devices and mMTC devices. To solve the formulated mixed-integer non-linear programming (MINLP) problem, which is NP-hard, an interference-aware subcarrier allocation algorithm for mMTC communication (IASA) is developed to maximize the number of active mMTC devices. Finally, the performance of the proposed algorithm is evaluated by simulation. Numerical results demonstrate that the proposed algorithm outperforms the three traditional benchmark methods, which significantly improves the utilization of the uplink spectrum. This indicates that the proposed IASA algorithm provides a better solution for IoT application.

7.
Sensors (Basel) ; 18(12)2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30486250

RESUMO

In wireless body area networks (WBANs), the secrecy of personal health information is vulnerable to attacks due to the openness of wireless communication. In this paper, we study the security problem of WBANs, where there exists an attacker or eavesdropper who is able to observe data from part of sensors. The legitimate communication within the WBAN is modeled as a discrete memoryless channel (DMC) by establishing the secrecy capacity of a class of finite state Markov erasure wiretap channels. Meanwhile, the tapping of the eavesdropper is modeled as a finite-state Markov erasure channel (FSMEC). A pair of encoder and decoder are devised to make the eavesdropper have no knowledge of the source message, and enable the receiver to recover the source message with a small decoding error. It is proved that the secrecy capacity can be achieved by migrating the coding scheme for wiretap channel II with the noisy main channel. This method provides a new idea solving the secure problem of the internet of things (IoT).

8.
Sensors (Basel) ; 18(5)2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29762506

RESUMO

In this paper, a joint non-orthogonal multiple access and time division multiple access (NOMA-TDMA) scheme is proposed in Industrial Internet of Things (IIoT), which allowed multiple sensors to transmit in the same time-frequency resource block using NOMA. The user scheduling, time slot allocation, and power control are jointly optimized in order to maximize the system α -fair utility under transmit power constraint and minimum rate constraint. The optimization problem is nonconvex because of the fractional objective function and the nonconvex constraints. To deal with the original problem, we firstly convert the objective function in the optimization problem into a difference of two convex functions (D.C.) form, and then propose a NOMA-TDMA-DC algorithm to exploit the global optimum. Numerical results show that the NOMA-TDMA scheme significantly outperforms the traditional orthogonal multiple access scheme in terms of both spectral efficiency and user fairness.

9.
Sensors (Basel) ; 18(3)2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29495630

RESUMO

Compressive sensing (CS)-based data gathering is a promising method to reduce energy consumption in wireless sensor networks (WSNs). Traditional CS-based data-gathering approaches require a large number of sensor nodes to participate in each CS measurement task, resulting in high energy consumption, and do not guarantee load balance. In this paper, we propose a sparser analysis that depends on modified diffusion wavelets, which exploit sensor readings' spatial correlation in WSNs. In particular, a novel data-gathering scheme with joint routing and CS is presented. A modified ant colony algorithm is adopted, where next hop node selection takes a node's residual energy and path length into consideration simultaneously. Moreover, in order to speed up the coverage rate and avoid the local optimal of the algorithm, an improved pheromone impact factor is put forward. More importantly, theoretical proof is given that the equivalent sensing matrix generated can satisfy the restricted isometric property (RIP). The simulation results demonstrate that the modified diffusion wavelets' sparsity affects the sensor signal and has better reconstruction performance than DFT. Furthermore, our data gathering with joint routing and CS can dramatically reduce the energy consumption of WSNs, balance the load, and prolong the network lifetime in comparison to state-of-the-art CS-based methods.

10.
Entropy (Basel) ; 20(7)2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-33265611

RESUMO

Multi-modality image fusion provides more comprehensive and sophisticated information in modern medical diagnosis, remote sensing, video surveillance, etc. Traditional multi-scale transform (MST) based image fusion solutions have difficulties in the selection of decomposition level, and the contrast loss in fused image. At the same time, traditional sparse-representation based image fusion methods suffer the weak representation ability of fixed dictionary. In order to overcome these deficiencies of MST- and SR-based methods, this paper proposes an image fusion framework which integrates nonsubsampled contour transformation (NSCT) into sparse representation (SR). In this fusion framework, NSCT is applied to source images decomposition for obtaining corresponding low- and high-pass coefficients. It fuses low- and high-pass coefficients by using SR and Sum Modified-laplacian (SML) respectively. NSCT inversely transforms the fused coefficients to obtain the final fused image. In this framework, a principal component analysis (PCA) is implemented in dictionary training to reduce the dimension of learned dictionary and computation costs. A novel high-pass fusion rule based on SML is applied to suppress pseudo-Gibbs phenomena around singularities of fused image. Compared to three mainstream image fusion solutions, the proposed solution achieves better performance on structural similarity and detail preservation in fused images.

11.
Entropy (Basel) ; 20(12)2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-33266659

RESUMO

Multi-exposure image fusion methods are often applied to the fusion of low-dynamic images that are taken from the same scene at different exposure levels. The fused images not only contain more color and detailed information, but also demonstrate the same real visual effects as the observation by the human eye. This paper proposes a novel multi-exposure image fusion (MEF) method based on adaptive patch structure. The proposed algorithm combines image cartoon-texture decomposition, image patch structure decomposition, and the structural similarity index to improve the local contrast of the image. Moreover, the proposed method can capture more detailed information of source images and produce more vivid high-dynamic-range (HDR) images. Specifically, image texture entropy values are used to evaluate image local information for adaptive selection of image patch size. The intermediate fused image is obtained by the proposed structure patch decomposition algorithm. Finally, the intermediate fused image is optimized by using the structural similarity index to obtain the final fused HDR image. The results of comparative experiments show that the proposed method can obtain high-quality HDR images with better visual effects and more detailed information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA